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Named Entity Recognition

! Task of identifying entities in text

! Entities can be general like, Person,Location, Organization

! Or can be specific like Medicine Name, Disease Name

! Other entities could be Date, Percent,Money

Example:

! No sense in blaming the wicket - (Kohli)Per
! (Hilary Clinton)Per is Hungry for War
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Named Entity Recognition

! Have a dictionary of Named Entities

! NER task would then become dictionary look-up
! Problem with ambiguous words

! Washington as Location v/s Washington as Person
! Unseen words (not present in training text)
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Named Entity Recognition

! Define a distribution over words
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Named Entity Recognition
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Named Entity Recognition

! Define a distribution over words
! Use context to predict ambiguous Named Entity tags

! I went to (Washington)Loc yesterday
! I met (Washington)Per yesterday

! Use language-specific features (Uppercase) to handle unseen words
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Existing Systems

Features/Knowledge Resources used by Existing NER systems

! POS Tags

! Affixes

! Gazetteers
! Character level features like

! Is First letter in Uppercase?
! Contains digit?
! Contains Non-alphanumeric characters?
! . . .

! . . .
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Word Embeddings [Pennington, Socher, and Manning
2014]

Figure: Projection of word embeddings from Glove in 2d
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Word Embeddings [Mikolov, Yih, and Zweig 2013]

Figure: Obama - USA + Russia = Putin
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Traditional Neural Network Approach for NER
[Collobert et al. 2011]

! Words/unigram features are
passed through a common
layer

! The resulting features are then
concatenated with other
features like uppercase,
Gazetteers . . .

! The resulting features are then
sent through a Neural Network
for prediction

adder
Exported at: Thu Dec 03 2015 12:14:05 GMT+0530 (IST)

NeuralNerTraditional

Common Layer

Hidden Layer

Per Loc Org O

I met Washington yesterday

Other Features
(uppercase)

Figure: Traditional Neural Network
Approach for NER
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Experimental Setup

! Evaluation done on CoNLL 2003 NER Shared Task for English
Tjong Kim Sang and De Meulder 2003

! Contains four tags, Person, Location, Organization, Miscellaneous

! Convert all words to lowercase

! Set caps feature if the word contains atleast one uppercase
character

! Numbers are replaced by word NUMBER
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Results [Collobert et al. 2011]

System F1 %

Ando and Zhang 2005 89.31
Florian et al. 2003 88.76

Traditional Approach 79.53

Table: CoNLL English NER Shared Task Results
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Unsupervised Representation Learning for Words
[Collobert et al. 2011]

! Use approach similar to
Autoencoder

! Given the context predict the
middle word

! The features from common
layer for every word acts as
word embedding

adder
Exported at: Thu Dec 03 2015 11:57:36 GMT+0530 (IST)

Word2vec

Common Layer

I met

Washington

yesterday

+

play run ...

w_1 w_2 w_3

w_1 + w_2 + w_3

Figure: Representation Learning for
words

15 of 33



Supervised Fine Tuning for NER [Collobert et al. 2011]

! Use the common layer from
unsupervised learning to initialize
the common layer for Neural NER

! Every word is passed through this
common layer and corresponding
features are extracted

! These features are then
concatenated with other features
like Uppercase, . . . and sent to
higher layers for prediction

! The parameters of common layer
are not updated during training

adder
Exported at: Thu Dec 03 2015 12:17:53 GMT+0530 (IST)

SennaNER1

Common Layer

Hidden Layer

Per Loc Org O

I met Washington yesterday

Other Features
(uppercase)

No training of this layer

Figure: Feedforward Neural Network
Architecture for NER
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Word Level Log-Likelihood Results [Collobert et al.
2011]

System F1 %

Ando and Zhang 2005 89.31
Florian et al. 2003 88.76

Traditional Approach 79.53
Traditional Approach + Unsupervised
Pretraining

86.96

Table: CoNLL English NER Shared Task Results
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Sentence-Level Log-likelihood (SLL) [Collobert et al.
2011]

! The earlier model only looked at the context and other features

! Information from Previous tag was not taken into consideration

! Some tags cannot follow other tags

! (Mumbai University)ORG
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Sentence-Level Log-likelihood Architecture

! Obtain prediction for all words in a sentence using previous
architecture

! Assuming a score for transitioning between tags

! Need to maximize the likelihood of taking valid path of tag
sequence
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Sentence-Level Log-likelihood Architecture

! The network outputs tag probabilities for
every word

! The tag transition scores are represented
by f (tagi → tagj ) = Aij

! Score for sentence-tag sequence is given
by

s([x ]N1 , [y ]
n
1, θ) =

N

∑
i=1

(
A[i ]t−1[i ]t + P(yi |xt)

)

adder
Exported at: Thu Dec 03 2015 12:59:43 GMT+0530 (IST)

SLLSenna

I met Washington yesterday

Per

Loc

Org

O
A_ij

P(Per | yesterday)

Figure: Feedforward Neural
Network Architecture for NER
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Sentence-Level Log-likelihood Architecture

! Score for sentence-tag sequence is given by

s([x ]N1 , [y ]
n
1, θ) =

N

∑
i=1

(
A[i ]t−1[i ]t + P(yi |xt)

)

! Maximize the score for valid tag sequence over all invalid tag
sequences

logP(s([x ]N1 , [y ]
n
1, θ) = s([x ]N1 , [y ]

n
1, θ)− logadd

∀[j ]T1
s([x ]N1 , [j ]

n
1, θ)
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Sentence-Level Log-likelihood Architecture

! Training is done efficiently by using recursion to calculate the
negative term

! Inference is done using Viterbi Algorithm
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Sentence Level Likelihood Results

System F1 %

Ando and Zhang 2005 89.31
Florian et al. 2003 88.76

Traditional Approach 79.53
Traditional Approach + Unsupervised
Pretraining

86.96

Traditional Approach + Unsupervised
Pretraining + SLL

88.67

Table: CoNLL English NER Shared Task Results
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Character Convolutional Neural Network for NER
[C. N. d. Santos and Guimares 2015]

! Previous approach still used some handcrafted features

! Can we make the system language independent by automatically
learning these features?

! Presence of uppercase characters or digits or special symbols
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Character Convolutional Neural Network for NER
adder
Exported at: Thu Dec 03 2015 15:04:39 GMT+0530 (IST)

CharacterCNN

Hidden Layer

Per Loc Org O

I met Washington yesterday Other Features
(uppercase)

Figure: Feedforward Neural Network Architecture for NER with Handcrafted
Features
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Character Convolutional Neural Network for NERadder
Exported at: Thu Dec 03 2015 15:08:23 GMT+0530 (IST)

CharCNNNow

Hidden Layer

Per Loc Org O

I met Washington yesterday

W a s h i n g t o n

Character Features

Figure: Feedforward Neural Network Architecture for NER with Learned
Character Features
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Character Convolutional Neural Network for NER

! Character representations are first
extracted for every character

! Various feature detectors are
applied across successive nGram
characters

! Since we are interested in
presence or absence of a feature

! Take maximum value for a
particular feature across nGram
characters

! These features are then
concatenated with word
embeddings

adder
Exported at: Thu Dec 03 2015 15:32:47 GMT+0530 (IST)

CharCNN

Character Representation for higher layer Processing

d-dimensional Character embeddings

Common Projection Matrix

Max Along Each Row

A g a r t a l a

Figure: Convolutional Neural Network
to extract Character level Features
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Character Convolutional Neural Network for NER

! The architecture used is similar to SENNA’s architecture

! Character-level features are learned using Convolutional Neural
Network

! Sentence-Level Log-Likelihood is used for training

! Inference is done using Viterbi Algorithm
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Experimental Setup

! Experiments performed on Portuguese NER and Spanish NER

! Word embeddings were trained on respective Wikipedia corpus

! HAREM corpus [D. Santos and Cardoso 2006] was used for
training and testing Portuguese NER

! CoNLL 2002 Spanish NER corpus [Tjong Kim Sang 2002] was
used for training and testing purpose
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Spanish NER: Results

System F1 %

Carreras, Mrquez, and Padr 2003 81.39
CharWNN 82.21

Table: Comparison with the state-of-the-art for the SPA CoNLL-2002 corpus
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Portuguese NER: Results

System F1 %

ETLCMT [C. d. Santos and Milidi 2012] 70.72
CharWNN 77.93

Table: Comparison with the State-of-the-art for the HAREM I corpus
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Conclusion

! We have seen Language-independent NER using Deep Learning

! Word embeddings and character embeddings were employed for
NER

! Results closer to state-of-the-art models were achieved

! Character level features trained from the training data were able to
extract relevant character-level features for NER
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What is Sentiment Analysis ?

Non-trivial Field of study in NLP

 Identify and analyse underlying opinion at: 
• document level 
• sentence level 
• entity/aspect level

Identify positive/negative 
sentiments Identify emotions
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What is Sentiment Analysis ?

• Non-Trivial because not at all straight-forward 
• Even human beings have a hard time agreeing on the intended sentiment 

underlying a piece of opinion.
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Diversities associated with Sentiment Analysis

Analysing sentiments from a given piece of text involves several 
aspects, each posing its own challenges 

• Classification Outputs 

• Type, Size and Domain of data 

• Language 

• Classification Type
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Diversities in Classification Output

Crude Sentiments Fine-Grained Sentiments
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Diversities in Classification Output

Plutchik’s Wheel of Emotions

Emotions
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Diversities in Classification Output

• Identifying Sarcasm, Thwarting, etc. 

— Sarcatic / Non-sarcastic 

— Thwarted / Non-Thwarted 

• Aspect Categorization 

— Aspects discussed in text (like food, genre, ambience, etc)
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• Size of training data available 

• Size of each piece of text 

— Blogs :: large (hundreds of words) 

— Reviews and mails :: medium (tens of words within 1/2 hundred) 

— Tweets :: short (20-30 words) 

• Language Model 

— Blogs and Reviews :: well-constructed grammatically correct sentences 

— Emails :: Grammatical and spelling inconsistencies 

— Tweets and Facebook posts :: no language model, no grammar, no rules, 
and peculiarities like emoticons, hashtags, etc. 

• Domain :: Specific (reviews on movies, tourism, etc.) or not specific (tweets, etc.)

Diversities in Data
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• Opinions do not owe themselves to any language 
• Language is a medium of expressing opinions;  

— words need to convey meanings, not the other way round 

• Although the essence of the opinion does not owe its identity to any language; 

— the intensity level may slightly vary owing to the vocabulary available in the 
languages  

— language models vary    

•  Cross-lingual help may not be available due to lack of such corpus 

•  Dataset like those extracted from Twitter or Facebook may consist of words from 
multiple languages

Diversities in Languages
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• Multi-class Classification 

— Each data point is assigned to exactly one class 

— Example :: Document-level or Sentence-level Sentiment Classification 

• Multi-label Multi-class Classification 

— Each data point can be assigned to more than one class 

— Example :: Aspect Categorization 

• Aspect-based Sentiment Analysis 

— A complicated task 

— First the aspects discuss in the text are to be identified, then the 
sentiments associated with each of the identified entities need to be figured

Diversities in Classification Types
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• Existing Machine Learning algorithms give good results; however, 

— Manual feature engineering required :: difficult 

— System is heavily data-dependent and problem-dependent 

— Not much effective in cases (like tweets) which follow no language model 

• Deep learning easily adaptable to the diversities of Sentiment Analysis with 
minimum human intervention 

— besides its other advantages already discussed earlier

Why Deep Learning for Sentiment Analysis ?
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Diversities of sentiment analysis can be easily accommodated by deep neural neworks. 

• Classification Outputs :: By changing the number of neurons in output layer, the 
network can learn based on training data 

• Data :: Since no manual feature-engineering is done, the network is capable to 
learn from any kind of data, give enough amount and enough time 

• Languages :: Since no language-specific properties are used, the neural 
networks can work effectively on texts belonging to language 

• Classification Types :: Adjusting the activation functions and changes in hyper-
parameters can easily accommodate the different types of classification. For 
instance, 

— Changing the output layer non-linearity from softmax to sigmoid for multi-
label classification 

— Having two networks to serve as hierarchical classifiers for aspect-based 
sentiment analysis

Why Deep Learning for Sentiment Analysis ?
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Deep Learning Models for Sentiment Analysis

•  The words are transformed into feature vectors which are basically word 

embeddings learnt by training the neural network. 

• Window-approach network is not desirable because many a times, 
classification w.r.t. to a particular word depends on some far-away word in the 
sentence not falling inside the window boundaries. 

• Hence, sentence network approach is preferred for various NLP tasks including 
Sentiment Analysis. 

— Convolution Neural Network (CNN) 

— Long Short-Term Memory Models (LSTM)
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CNN for sentiment analysis

Model CNN architecture 
Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.
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CNN for sentiment analysis

3 versions :: 
• static (word embeddings remain intact) 

• non-static (word-embeddings change - learned by the network) 

• multichannel (two channels - one static and one non-static) 

Word embeddings used: 

— trained on Google’s 300 billion news dataset. 

— randomly initialised to be learned by the network 

— sentiment-specific embeddings
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CNN for sentiment analysis

Variant of CNN (based on Yoon Kim’s model) :: using Dropout  

— The idea is to randomly mask/dropout/set to 0 some of the feature 
weights in each epoch (say a fraction of 0.4 of total number of 
neutrons) 

— Prevents overfitting of training data to a large extent 

Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.
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CNN for sentiment analysis

The basis of this model is CNN with dropout as suggested 

by Yoon Kim with the following hyper-parameters: 

Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.
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LSTM for sentiment analysis

Fully connected neural network

LSTM model for Classification Tasks 
http://deeplearning.net/tutorial/lstm.html

Input Layer

LSTM Layer

Mean Pool Layer
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LSTM for sentiment analysis

•  Input layer: This comprises of the feature vectors (of fixed dimensionality) of the words 
in the input sentence.  

— Each time-step corresponds to one word in the sentence 

Fully connected neural network
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LSTM for sentiment analysis

•   LSTM Layer: A combination of channels in each of which the words are fed into 
the LSTM cell producing outputs at each time-step  

— These outputs correspond to the features of the whole sentence from the 
corresponding input word’s point of view

Fully connected neural network
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LSTM for sentiment analysis

• Mean Pool Layer: Mean pooling operation is performed in each channel over the time-
step outputs to average the sentence properties contained in the LSTM outputs.  

— Averaging makes sense here as each value contains information of the whole 
sentence unlike in case of CNN where each value contained information of the 
neighbouring words in a window of pre-defined size.

Fully connected neural network
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LSTM for sentiment analysis

• The number of neurons in the output layer of the fully connected layer in the 
LSTM corresponds to the number of labels of classification. 

• LSTM model does not use any window or phrases; 

— whole sentence works as input to the system 

• Researchers have found this model to give appreciable results for various 
sentiment analysis tasks.
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Results obtained

Test set accuracies on the Stanford Sentiment Treebank as reported in literature 

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved Semantic Representations From Tree-
Structured Long Short-Term Memory Networks." arXiv preprint arXiv:1503.00075 (2015).
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Results obtained

Test set accuracies on different datasets by different models as reported in literature 

Kim, Yoon. "Convolutional neural networks for sentence classification." arXiv preprint arXiv:1408.5882 (2014).
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Summary

— Intersecting the Natural Language Processing task of Sentiment Analysis with 
the complex problem-solving algorithm of Deep Learning seems to be a good idea. 
  
— The deep learning approach promises one thing : given sufficient amount of 
data and sufficient amount of training time, it can perform the task of sentiment 
classification on any text, with no restriction on language, language model, or 
domain.  

— A key asset of deep learning - Adaptability to the diverse problem statements 
falling under sentiment classification 

— The results obtained by applying neural network models to different datasets 
look promising. 
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What is Word Sense Disambiguation?

3

 A boy is playing cricket on the playground

WSD is defined as identifying the meaning of words  
in a particular context

a game an insect

Winner sense
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• Supervised approaches 

• Rely on sense-annotated corpus 

• Show very good performance 

• Unsupervised approaches 

• Do not rely on sense-annotated corpus 

• Accuracy is less than supervised approaches 

• Knowledge based approaches 

• Rely on the quality of the knowledge resources 

• Accuracy is less than supervised approaches 

Different approaches of WSD

4
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Block diagram of WSD

5

WSD System

Training corpora: 
Sense tagged or 

untagged or 

Test corpora: 
Untagged text 

Knowledge resources: 
Wordnet, Thesauri, 

Ontologies

Sense tagged 
test corpora 
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What is Most Frequent Sense WSD?

• Assigns the most frequent sense to every content words in the 
corpus 

• Context is not considered 

• For example: cricket [S1 : game sense S2: insect sense] 

• If MFS (cricket) = S1 

1. A boy is playing cricket_S1 on the playground 

2. Cricket_S1 bites won't hurt you 

3. Cricket_S1 singing in the home is a sign of good luck 
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• Strongest baseline in WSD 

• Heuristic of choosing the most common sense is extremely powerful 

• An acid test for any new WSD algorithm is its performance against 
the MFS 

• Unsupervised WSD approaches generally fail to beat this baseline 

Why Most Frequent Sense WSD?

7
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How MFS baseline is created?

8

Plain Corpus 
(for every domain) Manual 

 sense-annotation Sense-annotated 
corpus 

(domainwise)

MFS Generation 
(domainwise)
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• An unsupervised approach for MFS detection using word 
embeddings (Bhingardive et al., 2015) 

• Training do not require any sense-annotated-corpora for training 

• Word embedding of a word is compared with all sense embeddings 
and obtain the predominant sense with the highest similarity. 

• Domain independent approach and can be easily ported across 
multiple languages 

MFS using Deep Learning

9
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• Vector representation of word 

• Represent each word with low-dimensional real valued vector. 

• Increasingly being used in variety of Natural Language Processing tasks, 

• word2vec tool (Mikolov et al, 2013) 

• takes a corpus as input and produces word vectors as output 

• first constructs a vocabulary from training data and learns vector 
representation of words 

• It captures many linguistic regularities 

• Vector(‘King’) –Vector(‘man’)+Vector[‘women’]=>Vector(‘queen’) 

• Work under the assumption that similar words occur in similar context

Word Embeddings

10
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• Related words given by word2vec tool for cricket   

• Word: cricket  Position in vocabulary: 3941 

                                                   Word           Cosine distance 

                                        cricketing               0.837223 

                                        cricketers               0.816575 

                                      Test_cricket             0.809482 

                                  Twenty##_cricket         0.806849 

                                          Twenty##              0.762427 

                                           Cricket                 0.754140 

                                         cricketer                0.737258 

                                          twenty##              0.731635 

                                       T##_cricket              0.730462

Word Embeddings contd..

11

Looking at the top related 
words we can see 

 Word Embeddings help  
in capturing MFS of words



of 35

Sense Embeddings

 

12
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WordNet Features

• English WordNet entry for a word “mind” : 

• Synset: 

{05619057} <noun.cognition>: (n) mind, head, brain, psyche, nous  (that which is 
responsible for one's thoughts, feelings, and conscious brain functions; the seat of 
the faculty of reason) "his mind wandered"; "I couldn't get his words out of my 
head“ 

• Synset ID: 05619057 

• Synset Members: mind, head, brain, psyche, nous 

• Gloss definition: that which is responsible for one's thoughts, feelings, 
and conscious brain functions; the seat of the faculty of reason 

• Example Sentences: "his mind wandered"; "I couldn't get his words out 
of my head“

13
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MFS Detection
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MFS Detection

15

02232196: cricket (leaping insect; 
male makes chirping noises by 
rubbing the forewings together)

00477400: cricket (a game played with 
a ball and bat by two teams of 11 
players; teams take turns trying to 

score runs) 

cricket
S1 S2 

insect

chirping noises 

rubbing 

forewings 

game

played ball

team bat
runs

Gloss 
SenseBag (S1)

Gloss 
SenseBag (S2)
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MFS Detection contd..

16

insect

chirping 
noises 

rubbing 
forewings 

game
played

ball

team
bat runs

S1

S2 

cricket
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3) 

2.  Experiments on WSD using different word vector models  

3.  Comparing WSD results using different sense vector models 

• Retrofitting Sense Vector Model (English) 

B. Experiments on selected words (34 polysemous words from 
SENSEVAL-2 corpus) 

1.  Experiments using different word vector models 

2.  Comparing results with various sizes of vector dimensions

17
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3)

18
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[A.1] Experiments on WSD using skip-gram

• Training of word embeddings: 
• Hindi:     Bojar (2014) corpus (44 M sentences)  

• English:  Pre-trained Google-News word embeddings 

• Datasets used for WSD: 
• Hindi: Newspaper dataset 
• English:  SENSEVAL-2 and SENSEVAL-3  

• Experiments are restricted to only polysemous nouns.  

19
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[A.1] Results on WSD

20
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[A.1] Results on WSD contd..

• F-Score is also calculated for increasing thresholds on the 
frequency of nouns appearing in the corpus. 

21

Hindi WSD English WSD
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[A.1] Results on WSD contd..

• WordNet feature selection for sense embeddings creation 

22

Sense Vectors  Using 
WordNet features

Precision Recall F-measure 

SB 51.73 38.13 43.89
SB+GB 53.31 52.39 52.85
SB+GB+EB 56.61 55.84 56.22
SB+GB+EB+PSB 59.53 58.72 59.12
SB+GB+EB+PGB 60.57 59.75 60.16
SB+GB+EB+PEB 60.12 59.3 59.71
SB+GB+EB+PSB+PGB 57.59 56.81 57.19
SB+GB+EB+PSB+PEB 58.93 58.13 58.52
SB+GB+EB+PGB+PEB 62.43 61.58 62
SB+GB+EB+PSB+PGB+PEB 58.56 57.76 58.16

SB: Synset Bag 
GB: Gloss Bag 
EB: Example Bag 
PSB: Parent Synset Bag 
PGB: Parent  Gloss Bag 
PEB: Parent Example Bag 

Table: Hindi WSD results using various WordNet features for Sense Embedding creation
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3) 

2.  Experiments on WSD using different word vector models  

23
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[A.2] Experiments on WSD using various 
Word Vector models

• MFS results is compared on various word vector models as listed 
below: 

24

Word Vector Model Dimensions

SkipGram-Google-News (Mikolov et. al, 
2013)

300

Senna (Collobert et. al, 2011) 50

MetaOptimize (Turian et. al, 2010) 50

RNN (Mikolov et. al, 2011) 640

Glove (Pennington et. al, 2014) 300

Global Context (Huang et. al, 2013) 50

Multilingual (Faruqui et.al, 2014) 512

SkipGram-BNC (Mikolov et. al, 2013) 300

SkipGram-Brown (Mikolov et. al, 2013) 300
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[A.2] Experiments on WSD using various 
Word Vector models contd..

25

WordVector Noun Adj Adv Verb 

SkipGram-Google-
News 54.49 50.56 47.66 20.66

Senna 54.49 40.44 28.97 21.9

RNN 39.07 28.65 40.18 19.42

MetaOptimize 33.73 36.51 32.71 19.83

Glove 54.69 49.43 39.25 18.18

Global Context 48.3 32.02 31.77 20.66

SkipGram-BNC 53.03 48.87 39.25 23.14

SkipGram-Brown 30.29 48.87 27.10 13.29

Table: English WSD results for words with corpus frequency > 2
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3) 

2.  Experiments on WSD using different word vector models  

3.  Comparing WSD results using different sense vector models 

• Retrofitting Sense Vector Model (English)

26
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[A.3] Results on WSD

27

WordVector SenseVector Noun Adj Adv Verb 

SkipGram-
Google-News Our model 58.87 53.53 46.34 20.49

Retrofitting 47.84 57.57 32.92 21.73

Senna Our model 61.29 43.43 21.95 24.22
Retrofitting 6.9 68.68 21.95 1.86

RNN Our model 42.2 26.26 40.24 21.11
Retrofitting 10.48 62.62 21.95 1.24

MetaOptimize Our model 37.9 50.5 31.7 18.01
Retrofitting 10.48 62.62 21.95 1.24

Glove Our model 58.33 53.33 39.02 17.39
Retrofitting 9.94 62.62 21.95 1.24

Global Context Our model 53.22 37.37 24.39 19.25
Retrofitting 12.36 68.68 21.95 1.24

SkipGram-Brown Our model 29.31 60.6 23.17 11.42
Retrofitting 11.49 68.68 21.95 1.26

Table: English WSD results for words with corpus frequency > 2
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3) 

2.  Experiments on WSD using different word vector models  

3.  Comparing WSD results using different sense vector models 

• Retrofitting Sense Vector Model (English) 

B. Experiments on selected words (34 polysemous words from 
SENSEVAL-2 corpus) 

1.  Experiments using different word vector models

28
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[B.1] Experiments on selected words

• 34 polysemous nouns, where each one has atleast two senses and 
which have occurred at least twice in the SENSEVAL-2 dataset are 
chosen 

29

Token Senses Token Senses 
church 4 individual 2

field 13 child 4

bell 10 risk 4

rope 2 eye 5

band 12 research 2

ringer 4 team 2

tower 3 version 6

group 3 copy 3

year 4 loss 8

vicar 3 colon 5

sort 4 leader 2

country 5 discovery 4

woman 4 education 6

cancer 5 performance 5

cell 7 school 7

type 6 pupil 3

growth 6 student 2
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[B.1] MFS Results on selected words

30

Word Vectors Accuracy

SkipGram-BNC 63.63

SkipGram-Brown 48.38

SkipGram-Google-News 60.6

Senna 57.57

Glove 66.66

Global Context 51.51

Metaoptimize 27.27

RNN 51.51

Multilingual 63.4

Table: English WSD results for selected  words from SENSEVAL-2 dataset
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Experiments 

A. Experiments on WSD 

1. Experiments on WSD using Skip-Gram model  

•  Hindi (Newspaper)  

•  English (SENSEVAL-2 and SENSEVAL-3) 

2.  Experiments on WSD using different word vector models  

3.  Comparing WSD results using different sense vector models 

• Retrofitting Sense Vector Model (English) 

B. Experiments on selected words (34 polysemous words from 
SENSEVAL-2 corpus) 

1.  Experiments using different word vector models 

2.  Comparing results with various sizes of vector dimensions

31
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[B.2] Comparing MFS results with various sizes of vector dimensions 

32

Word Vectors Accuracy
SkipGram-BNC-1500 60.61

SkipGram-BNC-1000 60.61

SkipGram-BNC-500 66.67

SkipGram-BNC-400 69.69

SkipGram-BNC-300 63.64

SkipGram-BNC-200 60.61

SkipGram-BNC-100 48.49

SkipGram-BNC-50 51.52
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Summary

• An unsupervised approach is designed for finding the MFS by using 
word embeddings. 

• Tested MFS results on WSD and some selected words. 

• Performance is compared with different word vector models and 
various size of the dimensions. 

• Our sense vector model always show better results as on nouns, 
adjectives and adverbs as compared to retrofitting model.  

• Approach can be easily ported to various domains and across 
languages.  

33
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What is Deep Learning?

Wikipedia

Deep learning is a branch of machine learning based on a set of
algorithms that attempt to model high-level abstractions in data by
using multiple processing layers with complex structures or otherwise,
composed of multiple non-linear transformations
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What is Deep Learning?

Deep Learning

Neural
Network with
multiple layers

Unsupervised
Representation

Learning

Hierarchical
Representation

Learning
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Why Deep Learning?

Lots of Unlabeled data
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Why Deep Learning?

Success of Traditional Approach depends on Handcrafted Features and
Knowledge Resources 1

Sentiment
Analysis

Tokenizer

POS
Tagger

Senti-
Wordnet

Lexicon
Features

1Sentiment Symposium Tutorial: http://sentiment.christopherpotts.net/
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Why Deep Learning?

Many tasks are inherently complex leading to hierarchical way of solving

Figure: Hierachical way of learning features for Image Classification [Lee et al.
n.d.]
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Perceptron [Rosenblatt 1962 ]

I Given a set of input/label pairs (x1, y1), . . . , (xn, yn)
I Learn a function to classify the problem

I Learn a set of weights (w1, . . . ,wm) for the input feature

I

f (x) =

(
1 if Âm

i=1 wixi > 0

0 otherwise

10 of 70



Perceptron

Activation
function

Âx2
w2

...

xn

wn

x1 w1

x0

inputs weights
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Training a Perceptron

Algorithm 1 Perceptron Training Algorithm

w  zeros() . Initialize the feature weights to zero
for every example (x , y) 2 Dataset D do

t  f (Âm
i=1 wixi ) . Calculate Prediction

w = w + a(y � t)x . Update Feature Weights

12 of 70



Perceptron Algorithm

Problem
Hand-
crafted
Features

Trainable
Classifier

Output

Input weights
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Perceptron

I The perceptron calculates, y = Âm
i=1 wixi + b

I This is similar to y = mx + c which is equation of a line in 2d and
hyperplane in general

I Divide the input feature space into two regions, (positive and
negative class regions)

14 of 70



Disadvantages of Perceptron Algorithm

I Cannot learn non-linear functions

I Famous XOR example

15 of 70



Disadvantages of Perceptron Algorithm

Input Output
x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

I Train a perceptron to replicate XOR gate

I Learn weights w1,w2
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Disadvantages of Perceptron Algorithm

x1

x2

red circles indicate 1
white circles indicate 0

17 of 70



Disadvantages of Perceptron Algorithm

I A single perceptron cannot learn an XOR function

I Need two decision boundaries

I Need multiple perceptrons

I What about hierarchy of connected perceptrons?
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Multiple Perceptrons for XOR Problem

y1

x2
w2 = 1

x1 w1 = �1

y2

x2
w3 = �1

x1 w4 = 1

y

w5 = 1

w6 = 1

19 of 70



Feedforward Neural Network

I The previous model used Threshold function as activation function

�1 �0.5 0.5 1

0.5

1

x

y

I We need a smooth approximation to this function
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Feedforward Neural Network

I One such approximation is Sigmoidal units

�1 �0.8 �0.6 �0.4 �0.2 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

f (x) = 1
1+e�5x

I Any non-linear activations like tanh, HardTanh, RELUs etc. are
used
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Feedforward Neural Network

I Many layers of perceptrons can be connected in a sequential way

I Each layer can have multiple perceptrons taking the same input

I Can be used to solve complex tasks

I The architecture gives rise to FeedForward Neural Network
(FFNN)

22 of 70



Feedforward Neural Network

Input
Features

Hidden
Neurons
Layer 1

Hidden
Neurons
Layer 2

Output
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Feedforward Neural Network: Forward Propagation

I Consider a simple FeedForward Neural Network with one hidden
layer

I f is the hidden layer non-linear activation function
I g is the output non-linear activation function

x1

x2

x3

a1

a2

a3

a4

a5

o1

o2

o3

o4
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Feedforward Neural Network: Forward Propagation

I Let X = (x1, . . . , xn) be the set of input features

I hidden layer activation neurons, aj = f (Ân
i=1Wjixi ), 8j 2 1, . . . h

x1

x2

x3

a1

a2

a3

a4

a5

o1

o2

o3

o4
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Feedforward Neural Network: Forward Propagation

I Let a = (a1, . . . , ah) be the set of hidden layer features

I output neurons, ok = g(Âh
j=1 Ukjaj ), 8k 2 1, . . .K

x1

x2

x3

a1

a2

a3

a4

a5

o1

o2

o3

o4
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FFNN: Backpropagation Algorithm [Rumelhart,
Geo↵rey E. Hinton, and Williams 1986]

I Adjust weights W and U to minimize the error on training set

I Define the error to be squared loss between predictions and true
output

E =
1

2
Error2 =

1

2
(y � o)2 (1)

I Gradient w.r.t to output is,

∂E

∂ok
=

1

2
⇥ 2⇥ (yk � ok) = (yk � ok) (2)
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FFNN: Backpropagation Algorithm

I We have the errors calculated at output neurons

x1

x2

x3

a1

a2

a3

a4

a5

∂E
∂o1

∂E
∂o2

∂E
∂o3

∂E
∂o4

I Send the error to lower layers
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FFNN: Backpropagation Algorithm

I Calculate gradient w.r.t to parameters U

∂E

∂ok
=

1

2
⇥ 2⇥ (yk � ok) = (yk � ok)

I ok = g(Âh
j=1 Ukjaj ), 8k 2 1, . . .K

∂E

∂Ukj
=

∂E

∂ok
⇥ g 0(

h

Â
j=1

Ukjaj )⇥ aj (3)

I Update for Ukj will be,

Ukj = Ukj � h ⇥ ∂E

∂Ukj
(4)
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FFNN: Backpropagation of errors

I Updation of parameters indicated by red lines

x1

x2

x3

a1

a2

a3

a4

a5

∂E
∂o1

∂E
∂o2

∂E
∂o3

∂E
∂o4
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FFNN: Backpropagation Algorithm

I How to update the parameters W ?

I aj = f (Ân
i=1Wjixi )

I ok = g(Âh
j=1 Ukjaj )

I Replacing for aj , ok = g(Âh
j=1 Ukj f (Ân

i=1Wjixi ))

I Calculate gradient w.r.t aj
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FFNN: Backpropagation Algorithm

I ok = g(Âh
j=1 Ukjaj )

I We have calculated ∂E
∂ok

I
∂E

∂aj
=

K

Â
k=1

∂E

∂ok
⇥ g 0 ⇥ Ukj (5)
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FFNN: Backpropagation of errors

I Errors are now accumulated at hidden layer neurons

x1

x2

x3

∂E
∂a1

∂E
∂a2

∂E
∂a3

∂E
∂a4

∂E
∂a5

∂E
∂o1

∂E
∂o2

∂E
∂o3

∂E
∂o4
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FFNN: Backpropagation of errors

I We have calculated errors accumulated at each hidden neuron, ∂E
∂aj

I Use this to update the parametrs W

I aj = f (Ân
i=1Wjixi ), 8j 2 1, . . . h

∂E

∂Wji
=

∂E

∂oj
⇥ f 0(

n

Â
i=1

Wjixi )⇥ xi (6)

I Update for Wji will be,

Wji = Wji � h ⇥ ∂E

∂Wji
(7)
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FFNN: Backpropagation of errors

I Updation of parameters indicated by red lines

x1

x2

x3

∂E
∂a1

∂E
∂a2

∂E
∂a3

∂E
∂a4

∂E
∂a5

o1

o2

o3

o4
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FeedForward Neural Network

I The training proceeds in an online fashion i.e, update parameters
after every example

I Minibatches are also used (i.e, parameters are updated after seeing
k examples )

I Monitor the error on validation set after one complete sweep of
training set

I The training repeats until the error on validation set stops to
decrease
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2-bit adder: FeedForward Neural Network

I Train a feedforward network to
add two 2-digit binary numbers

I The length of binary numbers
needs to be decided

First Number Second Number

Hidden Layer

Output101

1 11 0
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2-bit adder: FeedForward Neural Network

I Di↵erent weights are used for
di↵erent positions of number

I Red connections indicate first
digit connections

I Blue connections indicate last
digit connections

I red connections vs blue
connections

I Ideally we want the same
weights to be used for adding
bits irrespective of their
position

First Number Second Number

Hidden Layer

Output101

1 11 0
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2-bit adder: FeedForward Neural Network

I Di↵erent weights are used for
di↵erent positions of number

I Red connections indicate first
digit connections

I Blue connections indicate last
digit connections

I red connections vs blue
connections

I Ideally we want the same
weights to be used for adding
bits irrespective of their
position

First Number Second Number

Hidden Layer

Output101

1 11 0
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2-bit Adder: FeedForward Neural Network

I The network reads sequentially
one bit from two numbers

I The output is the sum of the
two digits

I What about carry generated
from previous addition?

I Can we make the network
remember previous carry?

First Number Second Number

Hidden Layer

Output

0 1

1
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2-bit Adder: Adding Memory

I Make hidden layer neurons
have memory

I The hidden layer neurons look
at input as well as previous
hidden layer state

atj =
2

Â
i=1

Wjixi +
3

Â
i=1

Hjia
t�1
i

I The hidden layer acts as a
state variable

I Depending on the state the
predicted output varies for the
same set of inputs

First Number Second Number

Hidden Layer

Output

0 1

1

Previous Hidden State
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Recurrent Neural Network [Elman 1990]

I Let x t = x t1, . . . , x tn be the
input to the network at time t

I The hidden state at current
time t is

atj = f (
n

Â
i=1

Wjix
t
i +

h

Â
i=1

Hjia
t�1
i )

I This hidden state is then fed
to the output layer

otk = g(
h

Â
j=1

Ukja
t
j )

Hidden Layer

Output

Previous Hidden State Input Features
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Recurrent Neural Network: Forward Propagation

Algorithm 2 RNN: Forward Propagation

a0  zeros() . Initialize the previous hidden state to zero
for every time-step t do

at = f (Ân
i=1W.ix ti + Âh

i=1 H.ia
t�1
i ) . at is the new state

ot = g(Âh
j=1 U.jatj )

I a1, . . . , aT is the sequence of hidden states produced
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Recurrent Neural Network: Forward Propagation

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: Forward Propagation RNN
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Recurrent Neural Network: Forward Propagation

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: Forward Propagation RNN: Time-Step 1
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Recurrent Neural Network: Forward Propagation

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: Forward Propagation RNN: Time-Step 2
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Recurrent Neural Network: Forward Propagation

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: Forward Propagation RNN: Time-Step 3
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Recurrent Neural Network: Backpropagation Through
Time(BPTT) [Werbos 1990]

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Error from output layer to
hidden layer

Figure: RNN Backpropagation Through Time: Time-Step 3
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Recurrent Neural Network: Backpropagation Through
Time(BPTT) [Werbos 1990]

Error from hidden layer to
input and previous hidden

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: RNN Backpropagation Through Time: Time-Step 3
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Recurrent Neural Network: Backpropagation Through
Time(BPTT) [Werbos 1990]

Error from higher hidden
layer(t=3) to input and previous

hidden layer(t=1)

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: RNN Backpropagation Through Time: Time-Step 3
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Recurrent Neural Network: Backpropagation Through
Time(BPTT) [Werbos 1990]

Error from higher hidden
layer(t=2) to input and previous

hidden layer(t=0)
0 0 0

x_1

x_2

x_3

o_1

o_2

o_3

Figure: RNN Backpropagation Through Time: Time-Step 3
51 of 70



Recurrent Neural Network: Backpropagation Through
Time(BPTT) [Werbos 1990]

Backpropagation of error from
output at time, t=2 all the way

down

0 0 0
x_1

x_2

x_3

o_1

o_2

o_3

Figure: RNN Backpropagation Through Time: Time-Step 2
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Deep Neural Network

Deep v/s Shallow Architectures

I Deep networks can learn complex function with relatively less
number of parameters compared to shallow ones [Bengio 2009]

I Many problems tend to be solved in a hierarchical way (Example:
Image Classification)
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What is Deep Learning?
Why Deep Learning?

Path to Deep Learning
Perceptron Algorithm
Feedforward Neural Network
Recurrent Neural Network

Representation Learning
Challenges in training Neural Networks
Unsupervised Feature Learning
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Challenges in training Neural Networks

I Non-convex Optimization (non-linear activations)

I Vanishing Gradient Problem

I Exploding Gradient Problem
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Vanishing Gradient Problem [Bengio:1994 ]

I Presence of non-linear
activations at every layer
makes gradient vanish
down the line

I Because of diluted
gradient, the parameters
will be close to their
random initialization values
at the lower layers

Hidden Layer

Output Layer

Input Features

Hidden Layer

Hidden Layer

Diminishing 
Gradient

Figure: Backpropagation: Vanishing
Gradient Problem
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Unsupervised Feature Learning

Can we learn features from Unlabeled Data?
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Understand Yourself 2

2http://www.humandesign.ca/
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Unsupervised Feature Learning

I Supervised Learning

Input Model Output

I Unsupervised Feature Learning

Input Model

Recon-
structed
Input
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Unsupervised Feature Learning: AutoEncoder
[G E Hinton and Salakhutdinov 2006]

I Train the network to
reconstruct the input

I Encoder tries to extract
relevant information from
the data

I Decoder tries to generate
the data using extracted
features

I Care to be taken so not to
let network learn an
Identity function

Input Features

Hidden Layer/Learned Features

Encoder
Decoder

Reconstructed Input

Figure: Auto-Encoder Architecture
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AutoEncoders [Bengio et al. 2007]

I Given input x , z = s(Wx)
be d-dimensional learned
features

I Now reconstructed input
from decoder, y = f (Dz)

I Train the network by
minimizing some error

I For Mean Squared Error,
E = 1

2 Âx2D ky � xk2
Input Features

Hidden Layer/Learned Features

Encoder
Decoder

Reconstructed Input

Figure: Auto-Encoder Architecture

61 of 70



Denoised AutoEncoders [Vincent et al. 2008]

I Given input x , add noise to
the data to get x̂

I Let z = s(Wx̂) be
d-dimensional learned
features

I Now reconstructed input
from decoder, y = f (Dz)

I Train the network by
minimizing error

I For Mean Squared Error,
E = 1

2 Âx2D ky � xk2

Ram went to market

Hidden Layer/Learned Features

Encoder
Decoder

Ram went to market Ram went to ---------

Figure: Denoised Auto-Encoder
Architecture
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Stacked AutoEncoders [Bengio et al. 2007]

I Train an Autoencoder to
reconstruct input with one
hidden layer

Input Features

Hidden Layer/Learned Features

Encoder
Decoder

Reconstructed Input

Figure: Unsupervised Pre-training:
Stacked AutoEncoder
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Stacked AutoEncoders [Bengio et al. 2007]

I Train an Autoencoder to
reconstruct input with one
hidden layer

I Use first hidden layer
features as input and train
an autoencoder on top of it

Input Features

Hidden Layer/Learned Features

Reconstruct Hidden Layer

Encoder
Decoder

Hidden Layer/Learned Features

Figure: Unsupervised Pre-training:
Stacked AutoEncoder
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Stacked AutoEncoders [Bengio et al. 2007]

I Train an Autoencoder to
reconstruct input with one
hidden layer

I Use first hidden layer
features as input and train
an autoencoder on top of it

I Repeat this for many layers
Input Features

Hidden Layer/Learned Features

Hidden Layer/Learned Features

Encoder
Decoder

Hidden Layer/Learned Features

Reconstruct Hidden Layer

Figure: Unsupervised Pre-training:
Stacked AutoEncoder
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Stacked AutoEncoders [Bengio et al. 2007]

I Train an Autoencoder to
reconstruct input with one
hidden layer

I Use first hidden layer
features as input and train
an autoencoder on top of it

I Repeat this for many layers

I Discard all the decoder
parameters and do
supervised training

Hidden Layer/Learned Features

Hidden Layer/Learned Features

Hidden Layer/Learned Features

Figure: Fine Tuning Phase
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Restricted Boltzmann Machines (RBMs) [Smolensky
1986]

I RBMs are Bipartite Undirected
Graphical Models

I Two partitioning of the graph:
visible nodes and hidden nodes

I Connection from input to
hidden nodes are undirected

I No connection between visible
nodes nor hidden nodes

I The visible units are binary
units (can be extended to real
or categorical values)

Input Features

Learned Features

x1 x2 x3 xn

h1 h2 h3 hm

w11

Figure: Restricted Boltzmann
Machines (RBM)

67 of 70



Restricted Boltzmann Machines (RBMs) [Smolensky
1986]

I Let X = (x1, . . . , xn) be visible nodes

I Let H = (h1, . . . , hm) be hidden nodes

I Energy function for the joint assignment is given by

E (x , h) =
n

Â
i=1

m

Â
j=1

wijxihj +
n

Â
i=1

bixi +
m

Â
j=1

cjhj (8)

I The probability of the joint assignment is given by,

p(x , h) =
exp�E (x ,h)

Z
(9)

I Here, Z is the partition function
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Restricted Boltzmann Machines (RBMs) [Smolensky
1986]

I The objective is to maximize the likelihood of the data

I Only the visible units values are known

L(D) =
1

N Â
x2D

logP(x) (10)

L(D) =
1

N Â
x2D

log Â
h2H

P(x , h) (11)

I The hidden node learns relevant features from the data

I The visible to hidden node connections be used to initialize a
Feedforward Neural Network
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Summary

I We began with a simple introduction to Perceptron Algorithm

I Failures of Perceptrons led to Multilayer Perceptron (Feed Forward
Neural Network)

I Feed Forward Neural Network and Recurrent Neural Networks
were introduced

I We looked at the challenges in training these networks

I Unsupervised Representation Learning algorithms which led to the
success of Deep Learning were introduced

I We will now look at one architecture of Neural Network which was
successfully applied on various tasks
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• A modified version of Recurrent Neural Network :: more complex 

• Deals with the limitations of RNN :: 

— Vanishing Gradient (over the time steps) 

— Exploding Gradient (over the time steps) 

• This model is an attempt to allow the unit activations to retain important 
information over a much longer period of time than the traditional RNN. 

• An LSTM network is well-suited to learn from experience to classify, 
process and predict time series when there are very long time lags of 
unknown size between important events. (wikipedia)

LSTM :: Overview
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Long Short Term Memory Model :: Information is stored in two distinct ways 

• The activations of the units are a function of the recent history of the model, 
and so form a short-term memory. 

— Much like knowing when you are hungry each time of the day 

• The weights too form a memory, called a long-term memory, as they are 
modified based on experience, but the timescale of the weight change is 
much slower than that of the activations. 

— Much like knowing when you know you are getting too fat or too thin

LSTM :: Long Term ? and Short Term ?
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Memory Cell :: A new structure introduced composed of four main elements:  

• an input gate,  

• a neuron with a self-recurrent connection (a connection to itself),  

• a forget gate, 

• an output gate. 

The gates serve to modulate the interactions between the memory cell itself and its environment.

LSTM :: Main Motivation

http://deeplearning.net/tutorial/lstm.html
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LSTM :: Architecture

http://cs224d. stanford.edu/lecture_notes/LectureNotes4.pdf
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Mathematical Formulation of LSTM Units ::

LSTM :: Architecture
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1.  Input Gate :  

— Uses the input word and the past hidden state to determine whether or not 
the input is worth preserving  

Much like deciding whether or not this sentence right here is worth remembering

LSTM :: Essential Components (1/5)
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2.  New Memory Generation :  

— Uses the input word and the past hidden state to generate a new memory which 
includes aspects of the new word  

Much like understanding that this sentence is for fun based on this sentence and the one 
encountered in the previous slide

LSTM :: Essential Components (2/5)
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3.  Forget Gate :  

— Uses the input word and the past hidden state to make an assessment on whether 
the past memory cell is useful for the computation of the current memory cell  

Much like knowing that this sentence is not worth paying attention to based on just by reading 
this and hence italic sentences encountered in previous slides can be forgotten

LSTM :: Essential Components (3/5)



of 2610

4.  Final Memory Generation :  

— First takes the advice of the forget gate and accordingly forgets the past memory.  

— Then takes the advice of the input gate and accordingly gates the new memory. 

— Then sums these two results to produce the final memory.  

Much like deciding that it  is OK to overlook these italicised sentences with no actual technical 
information (or is it?)

LSTM :: Essential Components (4/5)
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5.  Output Gate :  

— Makes the assessment regarding what parts of the memory needs to be 
exposed/present in the hidden state 

Much like thinking right now whether to retell this sentence right here (or any other part 
of this presentation for that matter) when sharing this tutorial’s take-away with others

LSTM :: Essential Components (5/5)
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• LSTM model looks very complicated, feels very advanced in architecture, and 
seems to be very effective to solve problems 

• In fact, an LSTM network is universal in the sense that given enough 
network units, it can compute anything a conventional computer can 
compute, provided it has the proper weight matrix, which may be viewed 
as its program. (wikipedia) 

• Demands :: enough training data, enough training time 

• Promises :: Learn from experience over long time and try to give as accurate a 
prediction for the problem at hand as possible

LSTM :: Summary
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• Convolutional neural network (CNN, or ConvNet) is a type of feed-forward 
artificial neural network where the individual neurons are tiled in such a way that 
they respond to overlapping regions in the input field. (wikipedia) 

• Convolutional Neural Networks are basically biologically-inspired variants of 
Multi-Layer Perceptrons 

• Architecture is complex :: Not fully connected 

• CNN has wide effective applications in Image Processing Industry 

— Has been found useful in the field of Natural Language Processing too 

• Convolutional Filters learn good representations automatically, without needing 
to represent the whole vocabulary.

CNN :: Overview
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• The words are transformed into feature vectors 
which are basically word embeddings learnt by 
training the neural network. 

•  Window-approach network is not desirable 
because many a times,  

— classification w.r.t. to a particular word 
depends on some far-away word in the sentence 
not falling inside the window boundaries. 

• Hence, sentence network approach is preferred 
for various NLP tasks to consider the whole 
sentence for producing any output 

— makes use of Convolution Neural Network

CNN :: Motivation

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” The Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
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Convolution Neural Networks are based on the following principles :: 

• Local Receptive Fields (small windows of texts which are overlapping) 

• Shared Weights (over windows) 

• Pooling (or down-sampling), mainly max pooling 

This model takes the whole sentence into consideration by means of 
overlapping windows.

CNN :: Motivation
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CNN :: Architecture

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” The Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.

Input Layer

Convolution Layer

Max Pool Layer
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Input Layer 

• This comprises of the concatenated feature vectors of the words (word 
embeddings) in the input sentence. 

• Word vectors with dimensionality ‘k’ (obtained from lookup table) ::  

• Sentence of length ’n' (input to the system) :: 

• Concatenation of words in range (i,j) :: 

CNN :: Layers (1/3)

xi 2 Rk

x1:n = x1 � x2 � ...� xn

xi:i+j

http://cs224d.stanford.edu/lectures/CS224d-Lecture13.pdf
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Convolution Layer 

• Generalisation of window approach where the linear layer operation is applied to 
successive overlapping windows of fixed size. (Padding is done accordingly). 

• Convolutional filter :: 

— a vector which goes over a window of ‘h’ words  

• Computation of a feature for CNN layer :: 

CNN :: Layers (2/3)

w 2 Rhk

ci = f(wT
xi:i+h�1 + b)

http://cs224d.stanford.edu/lectures/CS224d-Lecture13.pdf
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Convolution Layer 

• Filter ‘w’ is applied to all possible windows (concatenated vectors)  

— Padding is done accordingly 

• Sentence of length ’n' ::  

• All possible windows of length ‘h’:  

• Result is a feature map:

CNN :: Layers (2/3)

http://cs224d.stanford.edu/lectures/CS224d-Lecture13.pdf

{x1:h, x2:h+1, ..., xn�h+1:n}

c = [c1, c2, ..., cn�h+1] 2 Rn�h+1

x1:n = x1 � x2 � ...� xn
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Max Pooling Layer 

• Max pooling operation is performed to select the most prominent features contributing 
to classification of sentence.  

— Averaging is not preferred for many NLP tasks because all words in a sentence 
do not contribute equally in tagging a word. 

• Idea :: Capture the most important activation (maximum over time) 

• Pooled single number ::  

— from feature map ::  

• Because of max pooling, length of feature map (dependent on the length of the 
sentence) does not affect the architecture

CNN :: Layers (3/3)

ĉ = max{c}
c = [c1, c2, ..., cn�h+1] 2 Rn�h+1
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• Multiple features are required :: 

— Use different window (filter) sizes (say 
unigrams, bigrams, trigrams, 4-grams, etc.) 

— Use multiple weights for each filter 

• The max-pool output is then passed through 
fully connected neural network 

• As input, pre-trained word-vectors can be used 
(downloaded or trained using word2vec) 

• Two versions :: 

—  static :: no change in word-embeddings 

— non-static :: word-embeddings are also 
learned; updated through back-propagation 

CNN :: Architecture

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” The Journal of Machine Learning Research, vol. 12, pp. 2493–2537, 2011.
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CNN :: Architecture for sentence classification

Zhang, Ye, and Byron Wallace. "A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification." arXiv preprint arXiv:1510.03820 (2015). 
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• CNN model looks very complicated, feels very advanced in architecture, and 
seems to be very effective to solve problems 

• In fact, convolutional neural networks use relatively little pre-processing. 
This means that the network is responsible for learning the filters that in 
traditional algorithms were hand-engineered. The lack of a dependence on 
prior-knowledge and the existence of difficult to design hand-engineered 
features is a major advantage for CNNs. (wikipedia) 

• Demands :: enough training data, enough training time 

• Promises :: Give a chance to all inputs, select the informative and the essential 
ones and try to give as accurate a prediction for the problem at hand as possible

CNN :: Summary
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Its all about how you present your data

I The old adage: Garbage In Garbage Out

I Feature Engineering: Manually extracting and selecting features of
data for learning

I Representation Learning: Doing this automatically
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Representation Learning

I Learning representation of data that is best suited to the current
task

I A good representation should answer the following questions
positively:

I What prior assumptions are being made?
I Is it distributed?
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Local Representations

I Information about a particular feature located solely in the
corresponding dimension

Word Is living? Is singular? POS
boy Yes Yes Noun
eats No No Verb
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Distributed Representations

I Information about a particular feature distributed among a set of
(not necessarily mutually exclusive) dimensions

I One feature spread over multiple dimensions
I One dimension contributing to multiple features
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Distributed Representations: Example

Number Local Representation Distributed Representation
0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1
2 0 0 1 0 0 0 0 0 0 1 0
3 0 0 0 1 0 0 0 0 0 1 1
4 0 0 0 0 1 0 0 0 1 0 0
5 0 0 0 0 0 1 0 0 1 0 1
6 0 0 0 0 0 0 1 0 1 1 0
7 0 0 0 0 0 0 0 1 1 1 1

8 of 51



Word Representations

I Words treated as atomic symbols

I Water, water, everywhere, not any drop to drink
I Example: In classical n-gram language modelling, P(hotel |book , a)

does not contribute at all to P(motel |book , a)
I Would be better if we can leverage knowledge of hotel while

talking about motel, since they have similar meaning
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Meaning of a word

I Applications that may benefit if meaning understood

I Machine Translation
I Information Retrieval
I . . .

I What is the meaning of meaning?
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Meaning of Meaning or What does meaning mean?

I Oxford Dictionary: ’What is meant by a word, text, concept, or
action’

I Princeton WordNet: ’The message that is intended or expressed
or signified’

I Urban Dictionary: ’What people try to create or find. A human
condition in which they cannot exist in a meaningless state, even if
they do live in a meaningless state, they need to pretend they exist
in a world of meaning.’
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Modelling meaning for NLP

I Do we need to understand meaning to the extent of its
involvement in neurophysiologically correct mechanism of human
information processing?

I We are not quite there yet.

I Can we instead, have a computational model that is consistent
with human behaviour?

I Seems relatively feasible
I Distributed Representations of words are examples of such models
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Distributed Representations of words

I Also known as word vectors, word embeddings, etc.

I Primarily, they are vectors in n-dimensional space

I Try to model meaning of word
I Salient points

I Based entirely on language data
I Meaning of new word can also be acquired just through reading

(Miller and Charles, 1991)

I No prior assumptions about language
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Distributed Representations of words (contd.)

I Questions one should ask:

I Why are they vectors?
I How to create them?
I Are they a complete model of meaning?

Or do they convey only specific aspects?

I Is it possible to extract meaning by merely looking at usage data?
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Why are they vectors?

I Thanks to psychology (Lako↵ and Johnson, 1980, 1999)

I Similarity-is-Proximity: two similar things are conceptualized as
being close to or near each other

I Entities-are-Locations: in order for two things to be close to
each other, they need to have a spatial location

I Geometric Metaphor of meaning: Meanings are points in space,
and the proximity among their locations is a measure of their
semantic similarity (Sahlgren, 2006)
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Entire Vector vs. Individual dimensions

I Only proximity in the entire space is represented
I No phenomenological correlations with dimensions of

high-dimensional space (in majority of algorithms)
I Those models who do have some correlations, are known as

interpretable models
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How to create them?

I Consider the following sentences:
1. Can you cook some xyzerfw for me?
2. This xyzerfw are so delicious.
3. xyzerfw are not as healthy as fresh vegetables.

I Can you guess the meaning of xyzerfw ?
I How about now?

4. Maggi xyzerfw were recently banned for a brief period of time.
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How to create them? (contd.)

I Harris Distributional Hypothesis: Words with similar
distributional properties have similar meanings. (Harris, 1970)

I Harris does mentions that distributional approaches can model
di↵erences in meaning rather than the proper meaning itself
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How to create them? (contd.)

I Semantic di↵erential approaches to meaning representations
I Example: (Osgood, 1952)

small-large bald-furry docile-dangerous
mouse 2 6 1
rat 2 6 4

I Major problems:
I Features defined manually
I Allowed limited number of semantic features
I Is it theoretically possible to come up with limited set of features to

exhaustively cover the meaning space?
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Dynamic Context Vectors

I A really cool answer to ’How to create them’ by Gallant (1991)
I Fixed dimensions of existing semantic vectors plus additional

dimensions
I Additional dimensions initialized randomly
I Modified during learning such that proximity with vectors of

neighbours increases
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Co-occurrence Matrix

I Originally proposed by Schütze (1992)

I Foundation of count based approaches that follow

I Automatic derivation of vectors

I Collect co-occurrence counts in a matrix

I Rows or columns are the vectors of corresponding word

I If counting in both directions, matrix is symmetrical

I If counting in one side, matrix is asymmetrical, and is known as
directional co-occurrence
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Co-occurrence Matrix: Example

I Toy Corpus
I I hate rough driving .
I I hate databases .
I I enjoy flying .
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Co-occurrence matrix: Example (contd.)

counts I hate enjoy rough driving databases flying .
I 0 2 1 0 0 0 0 0

hate 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0
rough 0 1 0 0 1 0 0 0
driving 0 0 0 1 0 0 0 1

databases 0 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1
. 0 0 0 0 1 1 1 0

Table: Window 1 Symmetric Co-occurrence matrix for the sample corpus
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Similarity between vectors

I Simple alternatives such as dot product, Minkowski metrics, etc.
exist

I Cosine Similarity is preferred

I Fixed range of similarity
I Considers normalized vectors
I E�cient to compute
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Count based approaches

I Uses Co-occurrence counts

I We shall look at
I Latent Semantic Analysis (Dumais et al., 1988)
I Hyperspace Analogous to Language (Lund and Burgess, 1996)
I Random Indexing (Sahlgren, 2005)
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LSA

I Latent Semantic Analysis

I Originally developed as Latent Semantic Indexing (LSI) (Dumais
et al., 1988)

I Adapted for word-space models
I Developed to tackle inability of models of co-occurrence matrices

to handle synonymy
I Query about hotels cannot retrieve results about motels

I Words and Documents dimensions ! Latent dimensions
I Uses Singular Value Decomposition (SVD) for dimensionality

reduction
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LSA (contd.)

I Words-by-documents matrix

I Entropy based weighting of co-occurrences

fij = (log(TFij) + 1)⇥ (1� (
X

j

(
pij logpij
logD

))) (1)

where D is number of documents, pij =
TFij

fi
, and fi is frequency of

term i in document collection

I Truncated SVD to reduce dimensionality

I Cosine measure to compute vector similarities
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HAL

I Hyperspace Analogous to Language (Lund and Burgess, 1996)

I Developed specifically for word representations

I Uses directional co-occurrence
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HAL (contd.)

I Directional word by word matrix

I Distance weighting of the co-occurrences

I Concatenation of row-column vectors
I Dimensionality reduction Optional

I Discard low variant dimensions

I Normalization of vectors to unit length

I Similarities computed through Minkowski metric
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RI

I Random Indexing (Sahlgren, 2005)

I Designed to tackle dimensionality from scratch
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RI (contd.)

I Associate with each word a random vector

I Every time some words co-occur, add their vectors

I Average and normalize the vectors
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Prediction based approaches

I Try to predict either

I Word given context, or
I Context given word

I We shall look at
I Neural Network Language Model (NNLM) (Bengio et al., 2003)
I Skip Grams (Mikolov et al., 2013b,a)
I GloVe (Pennington et al., 2014)
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NNLM

I Neural Network Language Model

I Proposed by Bengio et al. (2003)

I Predict word given context

I Word Vectors learnt as a by-product of language modelling
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NNLM: Original Model
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NNLM: Simplified (1)
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NNLM: Simplified (2)
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Skip Gram

I Proposed by Mikolov et al. (2013b)

I Predict Context given word
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Skip Gram (contd.)

I Given a sequence of training words w
1

,w
2

, . . . ,wT , maximize

1

T

TX

t=1

X

�cjc,j

logp (wt+j |wt) (2)

where

p(wO |wI ) =
exp(uTwO

vwI
)

PW
w=1

exp(uTw vwI
)

(3)
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GloVe

I Global Vectors

I Proposed by Pennington et al. (2014)

I Predict Context given word

I Similar to Skip-gram, but objective function is di↵erent

J =
VX

i ,j=1

f (Xij)(w
T
i w̃j + bi + b̃j � logXij)

2 (4)

where Xij can be likelihood of ith and j th word occuring together,
and f is a weightage function
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How to evaluate your word vectors?

I Types of Evaluation

I Extrinsic: Use embeddings as features in downstream tasks such as
POS, NER, etc.

I Intrinsic: Evaluate linguistic regularities exhibited by word vectors

I Di↵erent embeddings’ developers evaluate embeddings di↵erently

I Some groups have done evaluations on standard sets

I Will discuss some of the intrinsic evaluation mechanisms
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Word Pair Similarity task

I Given a pair of words (w
1

,w
2

), find similarity

I Di↵erent datasets exist for such evaluation
I

http://www.wordvectors.org - A common web platform with
multiple datasets (Faruqui and Dyer, 2014)

I 12 di↵erent datasets
I 7 di↵erent pre-trained word vectors available to compare with
I Provides t-SNE visualizations for antonym-synonym and

male-female
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Word Analogy task

I Proposed by Mikolov et al. (2013b)

I Try to answer the question

man is to woman as king is to ?

I Often discussed in media

42 of 51



Word Analogy task

I Proposed by Mikolov et al. (2013b)

I Try to answer the question

man is to woman as king is to ?

I Often discussed in media

42 of 51



Word Analogy task

I Proposed by Mikolov et al. (2013b)

I Try to answer the question

man is to woman as king is to ?

I Often discussed in media

42 of 51



Word Analogy task

I Proposed by Mikolov et al. (2013b)

I Try to answer the question

man is to woman as king is to ?

I Often discussed in media

42 of 51



Word Intrusion detection task

I Proposed by Murphy et al. (2012)

I Provides a way to interpret dimensions

43 of 51



Word Intrusion detection task

I Proposed by Murphy et al. (2012)

I Provides a way to interpret dimensions

43 of 51



Word Intrusion detection task

I Proposed by Murphy et al. (2012)

I Provides a way to interpret dimensions

43 of 51



Word Intrusion Detection task (contd.)

I The task:

1. Select a dimension
2. Reverse sort all vectors based on this dimension
3. Select top 5 words
4. Select a word, which is in bottom half of this list, and is in top 10

percentile in some other columns
5. Give a random permutation of these 6 words to a human evaluator

I Example: {bathroom, closet, attic, balcony, quickly, hall}
6. Check precision
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Word Intrusion detection task

I Most approaches do not report results on this task
I Experiments done by us suggest many of them are not interpretable
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What next?

I Vectors of complex entities

I Phrases
I Sentences
I Documents
I Synsets
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Summary

I Motivated distributed representations in general
I Discussed word vectors in detail

I Choice of vectors as mathematical structure for representing words
I Gathering information for creating vectors
I Discussed few word vector models
I Provided evaluation mechanisms
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● Python 

— Object Oriented Language, and Intuitive to coding; close to natural language 

● NumPy 

— n-dimensional array object, and scientific computing toolbox 

● SciPy 

— more scientific toolboxes, and sparse matrix objects 

● libgpuarray 

— n-dimensional array objects in C for CUDA and OpenCL 

● Theano 

— Abstraction for machine learning; compiler/symbolic graph manipulation 

● Theanets 

— Abstraction for neural networks, and optimized algorithms

Python-based Tools
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• General purpose high-level object oriented interpreted language 

• Emphasises the code readability 

• Comprehensive standard library 

• Dynamic type and memory management 

• Slow execution 

• Easily extensible with C 

• Popular in web development and scientific communities

Python
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• NumPy 
• n-dimensional numeric array for high-performance computing 

• Slice of array are views; no copy 

• Elementwise computations 

• Includes linear algebra and fourier transforms 

• Pseudo-random number generators 

• Scipy 
• Sparse matrices 

• More linear algebra 

• Solvers and optimization algorithms 

• Matlab-compatible I/O 

• I/O and signal processing for image and audio

NumPy/SciPy
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• Non-lazy evaluation hurts performance 

• Bound to the CPU 

• Lacks symbolic or automatic differentiation 

• No automatic speed and stability optimisation

What is missing?
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• Even higher level language; specially for machine learning related 
computation 

• Syntax close to NumPy 

• (most) compilation in C for CPU or GPU 

• Automatic optimisation (speed and stability) 

• Can reuse other library for best performance 

• BLAS, SciPy, Cython, Numba, PyCUDA, CUDA 

• Automatic differentiation 

• Sparse matrices

Theano
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import theano 

# declare symbolic variable 

a = theano.tensor.vector(“a”) 

# build symbolic expression 

b = a + a ** 10 

# compile function 

f = theano.function([a], b) 

print f([0, 1, 2])  # prints “array([0, 2, 1026])”

Simple Example
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Computational Unit
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• Prerequisite (before a neural network) 

— NumPy refresher 

— Variables in theano 

— Logistic function 

— Shared Variables 

• A simple neural network 

— Feed-forward 

— Back propagation

Demo Outline
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References

Theano Tutorial  

• Theanets Hello world: simple classification example http://www.neural.cz/theanets-
hello-world.html 

• Ipython Notebook: http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/
master/Theano%20Tutorial.ipynb 

• Specific to Deep Learning: http://deeplearning.net/software/theano/tutorial/ 

Theano Documentation  

• Stable version: http://deeplearning.net/software/theano/index.html 
• Theanets 0.7.0pre release: http://theanets.readthedocs.org/en/latest/index.html 

Credits :: Girishkumar Ponkiya, PhD, IIT Bombay 
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Introduction

Download and Compile

Training

Finding related words using word2vec

Word Analogy: Interesting properties of word2vec

Word2vec using gensim
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Introduction: word2vec

I A tool which provides an e�cient implementation of neural
network architectures for computing vector representations of
words

I Skip-Gram model
I Continuous Bag of Words (CBOW) model

I Word vectors encode valuable semantic information about the
words that they represent

I Input: an unlabeled corpus

I Output: vector representation for each word in the corpus
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word2vec: Download and Compile

I Download: http://word2vec.googlecode.com/svn/trunk/

I Compile: make

5 of 26



word2vec: Training

I Training: find the script ./demo-word.sh in word2vec package
I

word2vec

- train <training data>
- output <file name>
- window <window size>
- cbow <0 (skip gram), 1 (cbow)>
- size <vector size>
- binary <0 (text), 1 (binary)>
- iter <iteratio num>

Example

./word2vec -train news-corpus.txt -output news vectors.bin -cbow 1
-size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20
-binary 1 -iter 15
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Finding related words using word2vec

I
./distance <output vector>

Example (related words to ’kerala’)
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Finding related words using word2vec contd..

I
./distance <output vector>

Example (related words to ’Tendulkar’)
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Word Analogy: Interesting properties of word2vec

I
./word-analogy <output vector>
- analogy task, e.g. Paris France, Delhi ?

Example (’Paris’ ’France’, ’Delhi’ ? )
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Word Analogy: Interesting properties of word2vec
contd..

I
./word-analogy <output vector>
- analogy task, e.g. cat kittens, dog ?

Example (’cat’ kittens’, ’dog’ ? )
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word2vec using gensim

I Initialize, save and load the model

model = Word2Vec(sentences, size=100, window=5,

min count=5, workers=4) #initialize

model.save(fname) #save

model = Word2Vec.load word2vec format(’vectors.txt’,

binary=False) #load in text format

model = Word2Vec.load word2vec format(’vectors.bin’,

binary=True) #load in binary format
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word2vec using gensim contd..

>> model.most similar(positive=[’woman’, ’king’],

negative=[’man’])

[(’queen’, 0.50882536), ...]

>> model.doesnt match("supper cereal dinner lunch".split())

’cereal’

>> model.similarity(’woman’, ’man’)

0.73723527

>> model[’computer’]

array([-0.00449,-0.00310, 0.02421,..], dtype=float32)
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doc2vec demo
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Input and Output
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Introduction: doc2vec

I Modifies the word2vec algorithm to find word representations for
larger blocks of text, such as sentences, paragraphs or entire
documents.

I doc2vec provides following architecture:
I distributed memory (dm)
I distributed bag of words (dbow)
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doc2vec: Input

I Input: an iterator of LabeledSentence objects

I Each object represents a single sentence and consists of two simple
lists:

I
a list of words

I
a list of labels

Example
sentence = LabeledSentence(words=[u’some’, u’words’, u’here’],
labels=[u’SENT 1’])

I Output: vector representations for each word and for each label in
the dataset.
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doc2vec: Training

model = Doc2Vec(sentences) #store model to mapable files

model.save(’/tmp/my model.doc2vec’) #load the model back

model loaded = Doc2Vec.load(’/tmp/my model.doc2vec’)
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doc2vec: Finding embeddings for a sentence

I get the raw embedding for the sentence as a NumPy vector

print model["SENT_0"]
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doc2vec: Finding most similar words or sentences

print model.most_similar("SENT_0")

[(’SENT_48859’, 0.2516525387763977),

(u’paradox’, 0.24025458097457886),

(u’methodically’, 0.2379375547170639),

(u’tongued’, 0.22196565568447113),

(u’cosmetics’, 0.21332012116909027),

(u’Loos’, 0.2114654779434204),

(u’backstory’, 0.2113303393125534),

(’SENT_60862’, 0.21070502698421478),

(u’gobble’, 0.20925869047641754),

(’SENT_73365’, 0.20847654342651367)]
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Introduction: sent2vec

I Maps a pair of short text strings (e.g., sentences or query-answer
pairs) to a pair of feature vectors in a continuous, low-dimensional
space

I Semantic similarity between the text strings is computed as the
cosine similarity between their vectors in that space.

I Performs the mapping using
I Deep Structured Semantic Model (DSSM) (Huang et al. 2013)
I DSSM with convolutional-pooling structure (CDSSM)(Shen et al.

2014; Gao et al. 2014).
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sent2vec: Download and Run

I Download: http://research.microsoft.com/en-us/
downloads/731572aa-98e4-4c50-b99d-ae3f0c9562b9/

I Run: sample/sent2vec/run.bat
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sent2vec: Input and Output

I Input: /inFilename: input sentence pair file, each line is a pair of
short text strings, separated by tab.

I Output: /outFilenamePrefix: output the similarity scores and the
semantic vectors of the input sentence pairs
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Example

Text1 Text2 DSSM CDSMM
Red alcoholic drink A bottle of wine 0.195318 0.108858
Red alcoholic drink Fresh orange juice 0.152488 0.138266
Red alcoholic drink Fresh apple juice 0.150574 0.193558
Red alcoholic drink An English dictionary -0.008468 0.022317
It is a dog That must be your dog 0.605376 0.590164
It is a dog It is a dog 0.952444 0.934719
It is a dog It is a pig 0.28585 0.28473
Dogs are animals They are common pets 0.452143 0.484175

Table: Sentence similarities using two models of sent2vec tool
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