
ICON 2017 TUTORIAL ON

DEEP LEARNING FOR NATURAL 

LANGUAGE PROCESSING

Presented By

Rudra Murthy V
Kevin Patel
Shad Akhtar

Under Direction Of

Dr. Pushpak Bhattacharyya

Department of Computer Science and Engineering

IIT Bombay

Department of Computer Science and Engineering

IIT Patna



Part 1: Basics



Introduction to Neural Networks
Deep Learning for NLP

Kevin Patel

ICON 2017

December 21, 2017



Overview

1 Motivation

2 Perceptron

3 Feed Forward Neural Networks

4 Deep Learning

5 Conclusion

Kevin Patel Neural Networks 2/53



Our brains are so awesome, that we cannot replicate their
computation

Our brains’ capability is so limited, that we have failed to replicate
their computation
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Motivation Perceptron Feed Forward Neural
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Purpose of Artiicial Intelligence

Human Like AI: An AI which functions like a human and has
similar characteristics
Beneicial AI: An AI which works in a fundamentally diferent
manner, but gets the job done
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The Human Brain

Brain - a large network of neurons
Neuron - a cell capable of receiving, processing and
transmitting information via electric and chemical signals

Dendrites receive input
Axon transmits output
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Perceptron

A simple artiicial neuron Rosenblatt (1958)
Input: one or more binary values xi

Output: single binary value y
Output computed using weighted sum of inputs and a
threshold
Giving diferent weights to diferent features while making a
decision
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Perceptron (Contd.)

x1

x2

x3

y
w1

w2

w3

y =

{

1, if
∑

wixi > threshold
0 otherwise
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Some Conventions

Inputs also treated as neurons (no input, output is the actual
value of the feature)
Rewrite

∑

wixi as w.x
Move threshold to the other side of the equation; Call it bias
b = −threshold

y =

{

1, if w.x + b > 0

0 otherwise
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Bias

An indication of how easy it is for a neuron to ire
The higher the value of bias, the easier it is for the neuron to
ire
Consider it as a prior inclination towards some decision

The higher your initial inclination, the smaller the amount of
extra push needed to inally make some decision
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Perceptron Example

x1

x2

x3

x4

y
10
2
2
-3

Should I go to lab? x1: My guide is here
x2: Collaborators are in lab
x3: The buses are running
x4: Tasty tiin in the mess
b: My inclination towards
going to the lab no matter
what

What if b ?
What if b ?
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Perceptron Example

x1

x2

x3

x4

y
10
2
2
-3

Should I go to lab? x1: My guide is here
x2: Collaborators are in lab
x3: The buses are running
x4: Tasty tiin in the mess
b: My inclination towards
going to the lab no matter
what
What if b = −3?
What if b = 1?
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Network of Perceptrons

x1

x2

x3

w1
11

w1
21

w1
31

w1
41

w1
51

w1
12

w1
22

w1
32

w1
42

w1
52

w1
13

w1
23

w1
33

w1
43

w1
53

y

w2
11

w2
12

w2
13

w2
14

w2
15

Outputs of perceptrons fed into next layer
Simpler decisions made at initial layers used as features for
making complex decisions.
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Perceptrons and Logic Gates

x1

x2
−1

2
2

OR Gate

x1

x2
−3

2
2

AND Gate

x1 1-2

NOT Gate

x1

x2
3

-2
-2

NAND Gate
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Perceptrons and Logic Gates (contd.)

x1

x2

3

−2

−2

3

3

−2

−2

−2

−2

3

−2

−2

XOR Gate
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Perceptrons and Logic Gates (contd.)

NAND gates are universal gates
Perceptrons can simulate NAND gates
Therefore, Perceptrons are universal for computation
Good News: Network of perceptrons is as capable as any
other computing device
Bad News: Is it just another fancy NAND gate?

Silver Lining: Learning algorithms can automatically igure out
weights and biases, whereas we need to explicitly design
circuits using NAND gates
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Learning

Simple weight update rule to learn parameters of a single
perceptron
Perceptron Convergence Theorem guarantees that learning
will converge to a correct solution in case of linearly separable
data.
However, learning is diicult in case of network of perceptrons

Ideally, a learning process involves changing one of the input
parameters by a small value, hoping that it will change the
output by a small value.
For instance, in handwritten digit recognition, if the network is
misclassifying 9 as 8, then we want
Here, a small change in parameters of a single perceptron ⇒
lipped output ⇒ change behavior of entire network
Need some machinery such that gradual change in parameters
lead to gradual change in output
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Learning (contd.)

If y is a function of x, then change in y i.e. ∆y is related to
change in x i.e. ∆y as follows (Linear Approximation)

∆y ≈ dy
dx∆x

Example

f(x) = x2

f′(x) = 2x
f(4.01) ≈ f(4) + f′(4)(4.01− 4)

= 16 + 2× 4× 0.01

= 16.08
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Learning (contd.)

For a ixed datapoint with two features (x1, x2), the change in
output of the perceptron depends on the corresponding
changes in weights w1 and w2 and the bias b
Thus, change in y - ∆y is

∆y ≈ ∂y
∂w1

∆w1 +
∂y
∂w2

∆w2 +
∂y
∂b∆b

Partial derivative ill-deined in case of perceptron, which
creates hurdle for learning
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Sigmoid Neurons

Another simple artiicial neuron McCulloch and Pitts (1943)
Input: one or more real values xi

Output: single real value y
Output computed by applying sigmoid function σ on the
weighted sum of inputs and bias

y = σ(w.x + b) = 1

1 + e−(w.x+b)

Decision making using sigmoid:
Given real valued output, use threshold
If y > 0.5, output 1, else 0
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Sigmoid vs. Perceptron

When z = w.x + b >> 0

e−z ≈ 0
σ(z) ≈ 1
Similar to perceptron producing 1 as output when z is large
and positive

When z = w.x + b << 0

e−z ≈ ∞
σ(z) ≈ 0
Similar to perceptron producing 0 as output when z is large
and negative

Diferent primarily when absolute value of z is small.
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Sigmoid vs. Perceptron (contd.)

Step (Perceptron) Sigmoid
Sigmoid is continuous and diferentiable over its domain
Learning is possible via small changes in parameters and using
linear approximation
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Activation Functions

Linear Sigmoid

Tanh ReLU
Kevin Patel Neural Networks 21/53
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Notations

x: Input
wl

ij: weight from jth neuron in (l− 1)th layer to ith neuron in
lth layer
bl

j: bias of the jth neuron in the lth layer
zl

j: wl.al−1 + bl
j

al
j: f(zl

j)

Kevin Patel Neural Networks 22/53



Motivation Perceptron Feed Forward Neural
Networks

Deep Learning Conclusion References

Neural Network Architecture

x1

x2

x3

w1
11

w1
21

w1
31

w1
41

w1
12

w1
22

w1
32

w1
42

w1
13

w1
23

w1
33

w1
43

y1

y2

w2
11

w2
21w2
12

w2
22w2
13

w2
23w2
14

w2
24

For MNIST Digit recognition
Input Layer 28× 28 = 784 neurons
Output Layer?
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One-hot output vs. Binary encoded output

Given 10 digits, we ixed 10 neurons in output layer
Why not 4 neurons, and generate binary representation of
digits?

The task is to observe features and learn to decide whether it
is a particular digit
Observing visual features and trying to predict, say, most
signiicant bit, will be hard

Almost no correlation there
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Feed Forward Computation

Given input x
z1 = w1.x + b1

a1 = σ(z1)
zl = wl.al−1 + b1

al = σ(zl)
aL is the output, where L is the last layer

Note that output contains real numbers (due to σ function)
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Loss functions

Consider a network with parameter setting P1

True Predicted Correct
0 1 0 0.3 0.4 0.3 yes
1 0 0 0.1 0.2 0.7 no
0 0 1 0.3 0.3 0.4 yes

Number of correctly classiied examples = 2
3

Classiication error = 1− 2
3 = 1

3

Consider same network with parameter setting P2

True Predicted Correct
0 1 0 0.1 0.7 0.2 yes
1 0 0 0.3 0.4 0.3 no
0 0 1 0.1 0.2 0.7 yes

Classiication error still the same
Need a smooth function of weights and biasesKevin Patel Neural Networks 26/53
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Loss functions

Mean Squared Error : MSE = 1
M
∑

(yi − ti)2

True Predicted Correct
0 1 0 0.3 0.4 0.3 yes
1 0 0 0.1 0.2 0.7 no
0 0 1 0.3 0.3 0.4 yes

Mean Squared Error = (0.54 + 0.54 + 1.34)/3 = 0.81

True Predicted Correct
0 1 0 0.1 0.7 0.2 yes
1 0 0 0.3 0.4 0.3 no
0 0 1 0.1 0.2 0.7 yes

Mean Squared Error = (0.14 + 0.14 + 0.74)/3 = 0.34

Indicates that second parameter setting is better
Kevin Patel Neural Networks 27/53
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Loss functions

Mean Cross Entropy
MCE = 1

M
∑

(−tilogyi − (1− ti)log(1− yi))

True Predicted Correct
0 1 0 0.3 0.4 0.3 yes
1 0 0 0.1 0.2 0.7 no
0 0 1 0.3 0.3 0.4 yes

Mean Cross Entropy = −(ln(0.4)+ ln(0.4)+ ln(0.1))/3 = 1.38

True Predicted Correct
0 1 0 0.1 0.7 0.2 yes
1 0 0 0.3 0.4 0.3 no
0 0 1 0.1 0.2 0.7 yes

Mean Cross Entropy = −(ln(0.7)+ ln(0.7)+ ln(0.3))/3 = 0.64
Indicates that second parameter setting is better
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Minimizing Loss

Consider a function C that depends on some parameter x as
shown below:

How to ind the value of x for which C is minimum?
Idea: Choose a random value for x, place an imaginary ball
there. It will eventually lead to a valley
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Gradient Descent

Recall ∆C ≈ dC
dx .∆x

We want to change x such that C is reduced i.e. ∆C has to
be always negative
What if we choose ∆x = −η dC

dx ?

∆C ≈ dC
dx .∆x

=
dC
dx .(−η

dC
dx )

= −η.(
dC
dx )

2

≤ 0

Gradient Descent: xt+1 = xt − η dC
dx
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Gradient Descent
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Back Propagation

Efective use shown in Williams et al. (1986)
Every neuron taking part in the decision
Every neuron shares the blame for error
Decision made by a neuron dependent on its weights and
biases
Thus error is caused due to these weights and biases
Need to change weights and biases such that overall error is
reduced

Can use gradient descent here
For a weight wk

ij, the weight update will be

wk
ij ← wk

ij − η
∂C
∂wk

ij
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Back Propagation (contd.)
Will use calculus chain rule to obtain the partial derivatives

1 First ind error for each neuron on the last layer
δL = ∇aC⊙ σ′(zL)

2 Then ind error for each neuron on the interior neurons
δl = ((wl+1)Tδl+1)⊙ σ′(zl)

3 Update weights and biases using following gradients:
∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j
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Vanishing Gradient Problem

Observed by Hochreiter (1998)
Important point: the σ′(zl) term in the previous steps
Derivative of the activation function
Will be multiplied at each layer during back propagation
Example: 3 layer network

δ4 = A.σ′()

δ3 = X.δ4.σ′() = X.A.σ′().σ′()

δ2 = Y.δ3.σ′() = Y.X.A.σ′().σ′().σ′()

δ1 = Z.δ2.σ′() = Z.Y.X.A.σ′().σ′().σ′().σ′()
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Vanishing Gradient Problem (contd.)

Sigmoid Derivative of Sigmoid
Maximum value of sigmoid’s derivative = 0.25
0.25n ≈ 0 as n→∞
Gradient tends to 0 i.e. vanishes
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Deep Learning

Set of techniques and architectures that tackles such learning
problems and helps to reach optimal parameters faster
Various methods:

Start at near optimal values of parameters so smaller updates
due to vanishing gradients is not much of a problem
Use better activation functions which can avoid such problems
Use better optimizers than standard gradient descent
Use novel architectures
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Tackling Vanishing Gradients via Greedy Unsupervised
Pretraining

x1

x2

x3

x4

x5

y1

y2

y3

y4

Proposed by Bengio et al. (2007)
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Tackling Vanishing Gradients via Novel Activation
Functions

Rectiied Linear Unit Nair and Hinton (2010): Derivative = 1
when non-zero, else 0
Product of derivatives does not vanish
But once a ReLU gets to 0, it is diicult to get it to one again
(Dead ReLU problem)

Addressed by better variants such as Leaky ReLU Maas et al.
(2013), Parametric ReLU He et al. (2015) etc.
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Types of Gradient Descent

Based on the amount of data used for training
Batch GD: all training data per update, slow, not applicable in
online setting, but guaranteed to converge to global minimum
for convex and local minimum for non-convex
Stochastic GD: one training datapoint per update, luctuates
a lot, allows to jump to new and potentially better local
minima, this complicates convergence, has been shown that
by decreasing learning rate almost certainly converges to
global in convex and local in non-convex
Mini-batch GD: batch of n datapoints per update, best of
both worlds - relatively stable convergence and can use matrix
operations for batches
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Tackling Learning Diiculties via Optimizers

SGD mainly used for a long time
Converges slowly
Can get stuck in local minima
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SGD
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SGD + Momentum
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Nesterov Accelerated Gradient

Developed by Nesterov (1983)
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Other Optimizers

AdaGrad: Adapts the learning rate to the parameters,
performing larger updates for infrequent and smaller updates
for frequent parameters Duchi et al. (2011)
AdaDelta: Does not need an initial learning rate Zeiler (2012)
RMSProp: Good with recurrent networks; Unpublished
method from Hinton’s Coursera Lectures
Adam: Beneits of RMSProp and AdaDelta mixed with
momemtum tricks Kingma and Ba (2014)
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Tackling Vanishing Gradients via Novel Architectures

Novel architectures made to speciic problems
Example:

Derivative of activation function in LSTM is identity function
is 1. Gradient does not vanish
Efective weight depends on forget gate activation, whose
derivative is never > 1.0. So Gradient does not explode

Will be covered in other sessions
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Conclusion

Exciting area of research
Heavy involvement from industry
Many developments in each of those subareas: Activation
functions, Optimizers, Architectures, etc.
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Consider the task of Image Recognition

● CNNs are shown to learn hierarchical features from the 
data [Zeiler et.al 2014]

● Layer 1 recognizes lines and curves, layer 2 composes 
them to recognize simple shapes like squares, circles, 
etc.

● Layer 3 composes the output from layer 2 to recognize 
more complex shapes like humans, cars, etc.

● Two charactersitics are prominent here:
○ Recognizing position-independent features
○ Composing the features to obtain more complex 

features
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Consider the task of Paraphrase Detection

There is a Deep Learning Tutorial at ICON DL Tutorial is scheduled @ ICON

Are they 
paraphrases?
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Consider the task of Paraphrase Detection

There is a Deep Learning Tutorial at ICON DL Tutorial is scheduled @ ICON

Lexical

Syntax

Semantics

Lexical

Syntax

Semantics
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Consider the task of Paraphrase Detection

● Paraphrase detection can be handled at various layers of nlp layers
● At lexical layer, we compare the word overlap between the two sentences
● At Semantic layer we compare the meaning of the two sentences
● Each higher layer requires information coming from the lower layer
● We need a hierarchy of trainable feature extractors
● The lower layer feature extractor should be position independent
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What are CNNs?
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What is CNN?
Convolutional neural network (CNN, or ConvNet) is a type of feed-forward 
artificial neural network where the individual neurons are tiled in such a way 
that they respond to overlapping regions in the input field. (wikipedia)

CNNs are good at learning features from the data

Specifically, we will discuss the Time-Delay Neural Network used by Collobert et.al 
(2011)

9



What is CNN?
CNN is a type of feed-forward neural network with

● Local connectivity
● Share weights/parameters across spatial positions
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CNNs for various NLP tasks
Sentiment Analysis
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a supervised machine learning system to predict the sentiment of the text
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Input Sentence

Feedforward 
Network

Output Label
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Input Sentence

Feedforward 
Network

Output Label
● How to represent the input sentence?

○ Bag-of-words representation
■ Disregards the word order

○ Concatenation of Word Embeddings
■ How to handle variable-length sentences?
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Bag of Words Representation (Average of Word Embeddings)

Feedforward 
Network

Output Label
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Bag of Words Representation (Average of Word Embeddings)

● Influence of unimportant words 
in the sentence changes the 
average embedding

● Use Tf-IDF to give importance to 
relevant words

16



Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Input Sentence

Feedforward 
Network

Output Label
● How to represent the input sentence?

○ Concatenate the word embeddings of all words in the 
sentence

■ How to handle variable-length sentences?
■ Place a restriction on the sentence length
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

The movie is very good
The movie is very bad

Feedforward 
Network

Output LabelConcatenate the word embeddings 
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Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Feedforward 
Network

Output 
Label

The
movie

is
very
good

The movie is very good

Concatenate the word embeddings 

Word
Embedding

19



Consider the task of sentiment analysis,

The movie is very good The movie is very badPositive Negative

Train a simple Feedforward neural network to predict the sentiment of the text

Concatenate the word embeddings 

● f denotes the feedforward 
network here

● Let W denote the weights in 
the first layer

● g denotes the layers above

20



Concatenation of word embeddings for sentiment analysis

● How will the model behave 
for the input sentence

“Very good was the movie”

Let, the training data consist of instances of the form,

The ------ is very ------

The first slot is filled by words like movie, camera, …. and the second
Slot is filled by words like good, bad, horrible, ….

21



CNNs for Sentiment Analysis
● Simplest approach for sentiment analysis is to check if there are any 

sentiment bearing words
● Assign the label based on the sentiment score of the word
● This is essentially what Tf-IDF scheme tries to simulate
● Can we do this using Deep Learning?

22



W1 W2
Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good



W1 W2
Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good



W1 W2
Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good



W1 W2
Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good

The movie

movie is

is very

very good



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good

The movie

movie is

is very

very good

How do we go from variable length 
representation to a fixed length 
representation so that the feed-forward 
neural network can handle?



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good

The movie

movie is

is very

very good

How do we go from variable length 
representation to a fixed length 
representation so that the feed-forward 
neural network can handle?

Ideally we have to choose the phrase “very 
good”, so weightage have to be given to 
this phrase



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good

The movie

movie is

is very

very good

How do we go from variable length 
representation to a fixed length 
representation so that the feed-forward 
neural network can handle?

Ideally we have to choose the phrase “very 
good”, so weightage have to be given to 
this phrase

Max 
Pooling



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

The movie is very good

The m
ovie

m
ovie is

is very

very good

Max over 
every 

feature

Feedforward 
Network

Output 
Label

Most of the 
features extracted 
from the bigram 

“very good”



W1 W2

Simple Linear layer 
looking at two words 
at a time
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CNNs for Sentiment Analysis
Use Feedforward neural network on consecutive ngram words

Word
Embedding

very good was the movie

Very good

good w
as

w
as the

the m
ovie

Max over 
every 

feature

Feedforward 
Network

Output 
Label



CNNs for various NLP tasks
Paraphrase Detection

33



Paraphrase Detection

There is a Deep Learning Tutorial at ICON Deep Learning Tutorial is scheduled at ICON

Are they 
paraphrases?
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Paraphrase Detection

There is a Deep Learning Tutorial at ICON Deep Learning Tutorial is scheduled at ICON

Are they 
paraphrases?

Simplest approach for paraphrase detection using CNNs

35



W1 W2

Simple Linear layer looking 
at two words at a time
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CNNs for Paraphrase Detection
Use Feedforward neural network on consecutive ngram words

Word
Embedding

Feedforward 
Network

Output 
Label

DL Tutorial is scheduled ICON@

W1 W2

There Tutorialis Learning ICON@a Deep

How to go from 
variable length to 

fixed length 
representation?



W1 W2

Simple Linear layer looking 
at two words at a time
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CNNs for Paraphrase Detection
Use Feedforward neural network on consecutive ngram words

Word
Embedding

Feedforward 
Network

Output 
Label

DL Tutorial is scheduled ICON@

W1 W2

There Tutorialis Learning ICON@a Deep

Max Pooling 
selects the most 
relevant bigram



W1 W2

Simple Linear layer looking 
at two words at a time

38

CNNs for Paraphrase Detection
Use Feedforward neural network on consecutive ngram words

Word
Embedding

Feedforward 
Network

Output 
Label

DL Tutorial is scheduled ICON@

W1 W2

There Tutorialis Learning ICON@a Deep

We need a 
summary of the 

sentence



W1 W2

Simple Linear layer looking 
at two words at a time
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CNNs for Paraphrase Detection
Use Feedforward neural network on consecutive ngram words

Word
Embedding

Feedforward 
Network

Output 
Label

DL Tutorial is scheduled ICON@

W1 W2

There Tutorialis Learning ICON@a Deep

Mean Pooling - 
average of all the 
extracted features



W1 W2

Simple Linear layer looking 
at two words at a time
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CNNs for Paraphrase Detection
Use Feedforward neural network on consecutive ngram words

Word
Embedding

Feedforward 
Network

Output 
Label

DL Tutorial is scheduled ICON@

W1 W2

There Tutorialis Learning ICON@a Deep

Mean Pooling - 
average of all the 
extracted features

A binary 
classification task



CNNs for Paraphrase Detection
● The architecture presented is too simple
● We can have parallel CNNs each looking at ngrams of specific length
● CNNs can be thought of performing composition operation
● We can have hierarchy of CNNs, which composes words to form simple 

phrases, simple phrases to form complex phrases, complex phrases to 
sentences, sentences to paragraphs, ....

41



CNNs in Torch
● First let us create word embedding matrix 

○ embed = nn.LookupTableMaskZero(sourceDictionarySize, embeddingDimension) 

● Given any word we send it through LookupTable to get the corresponding 
word embeddings

○ outputWordEmbed = embed:forward(inputWords)

● Now let us Create CNN module
○ cnn = nn.Sequential()
○ cnn:add(embed)
○ cnn:add(nn.TemporalConvolution(embeddingDimension ,  filterSize, nGrams))
○ cnn:add(nn.Tanh())  -- Optional non-linearity
○ cnn:add(nn.Max(1))

42



Thank You

43



Questions?
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Outline
● Recurrent Neural Network (RNN)

○ Training of RNNs
■ BPTT

○ Visualization of RNN through Feed-Forward Neural Network
○ Usage
○ Problems with RNNs

● Long Short Term Memory (LSTM)
● Attention Mechanism
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Recurrent Neural Network (RNN)
Basic definition:

A neural network with feedback connections.

O

U

X

W
V

s

X: Input
O: Ouput
S: Hidden state

Weights: [U,V,W]
Learned during training

3



Recurrent Neural Network (RNN)
● Enable networks to do temporal processing
● Good at learning sequences
● Acts as memory unit Memory 

4



RNN - Example 1
Part-of-speech tagging: 
● Given a sentence X, tag each word its corresponding grammatical class.

[ I love mangoes ]X = 

[ PRP VBP NNS ]O = 

5



RNN - Example 2

●

●

●
○
○
○
○
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Training of RNNs

7



How to train RNNs?
● Typical FFN 

○ Backpropagation algorithm

● RNNs
○ A variant of backpropagation algorithm namely Back-Propagation Through Time (BPTT).  

8



BackPropagation Through Time (BPTT)

Error for an instance = Sum of errors at each time step of the instance

Gradient of error

9



BackPropagation Through Time (BPTT)
For V

For  W  (Similarly for U)
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Visualization of RNN through 
Feed-Forward Neural Network

11



Problem, Data and Network Architecture
● Problem:

○ I/p sequence (X) : X0, X1, …, XT 
○ O/p sequence (O) : O0, O1, …, OT

● Representation of data:
○ I/p dimension : 4

■ X0 → 0 1 1 0
○ O/p dimension : 3

■ O0 → 0 0 1

● Network Architecture
○ Number of neurons at I/p layer : 4
○ Number of neurons at O/p layer : 3
○ Do we need hidden layers?

■ If yes, number of neurons at each hidden layers
12
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Network @ t = 1
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U

U

W

X
0

X
1

O
0

O
1

O1 = f(W.O0 + U.X1)
= f([W, U] . [O0, x1])

t

0

1

Network @ t = 1
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U

U

W

X
0

X
1

U

W

X
2

O
2

O2 = f(W.O1 + U.X2)
= f([W, U] . [O1, x2])

t

0

1

2

O
0

O
1

Network @ t = 2
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O
2

W

O-1=0

Complete Network
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Different views of the network
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When to use RNNs

22



Usage
● Depends on the problems that we aim to solve.
● Typically good for sequence processings.
● Some sort of memorization is required.

23



Bit reverse problem
● Problem definition:

○ Problem 1: Reverse a binary digit. 
■ 0 → 1   and    1 → 0

○ Problem 2: Reverse a sequence of binary digits.
■ 0 1 0 1 0 0 1    →     1 0 1 0 1 1 0 
■ Sequence: Fixed or Variable length 

○ Problem 3: Reverse a sequence of bits over time.
■ 0 1 0 1 0 0 1    →     1 0 1 0 1 1 0

○ Problem 4: Reverse a bit if the current i/p and previous o/p are same.

Input sequence 1 1 0 0 1 0 0 0 1 1

Output sequence 1 0 1 0 1 0 1 0 1 0 24



Data
Let 

● Problem 1 
○ I/p dimension: 1 bit O/p dimension: 1 bit

● Problem 2
○ Fixed

■ I/p dimension: 10 bit O/p dimension: 10 bit
○ Variable: Pad each sequence upto max sequence length: 10

■ Padding value: -1
■ I/p dimension: 10 bit O/p dimension: 10 bit

● Problem 3 & 4
○ Dimension of each element of I/p (X) : 1 bit
○ Dimension of each element of O/p (O) : 1 bit
○ Sequence length : 10

25



Network Architecture
Problem 1:

● I/p neurons = 1
● O/p neurons = 1

O
0

O
1

W WW
U U

X
0

X
1

O
t

Ot-1

U
X
t

O-1
O10

W
U

X10

….

No. of I/p neurons   = I/p dimension
No. of O/p neurons = O/p dimension

Problem 2: Fixed & Variable
● I/p neurons = 10
● O/p neurons = 10

W

O

U
X

U
X
0

O
0

O
1

O10

X
1

X10

Problem 3:
● I/p neurons = 1
● O/p neurons = 1
● Seq len = 10

U
Xt = X10, … , X1, X0

Ot = O10, … , O1, 
O0

Problem 4:
● I/p neurons = 1
● O/p neurons = 1
● Seq len = 10

….

U
X
0

O
0

O
1

O10

X
1

X10

….
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Different configurations of RNNs

Image 
Captioning

Sentiment 
Analysis

Machine 
Translation

Language 
modelling 27



Problems with RNNs

28



Language modelling: Example - 1 

•

29



Language modelling: Example - 2 

•

30



● Cue word for the prediction
○ Example 1: sky → clouds  [3 units apart]
○ Example 2: hindi → India  [9 units apart]

● As the sequence length increases, it becomes hard for RNNs to learn 
“long-term dependencies.”

○ Vanishing gradients: If weights are small, gradient shrinks exponentially. Network stops 
learning.

○ Exploding gradients: If weights are large, gradient grows exponentially. Weights fluctuate 
and become unstable. 

Vanishing/Exploding gradients

31



RNN extensions
● Bi-directional RNN
● Deep (Bi-directional) RNN

32



Long Short Term Memory (LSTM)
 Hochreiter & Schmidhuber (1997)

33

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


LSTM
● A variant of simple RNN (Vanilla RNN)
● Capable of learning long dependencies. 
● Regulates information flow from recurrent units.

34



Vanilla RNN vs LSTM

35



LSTM cell

•

•
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LSTM gates

•
–
–
–
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LSTM gates

•
–
–
–
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LSTM gates

•
–
–
–
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LSTM gates

•
–
–
–
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Sequence to sequence transformation
with

Attention Mechanism

41



Decoder

Encoder

Sequence labeling v/s Sequence transformation

PRP VBZ NNP

I love mangoesI love mangoes

PRP VBZ NNP

•

Sentence embeddings 42



Why sequence transformation is required?
● For many application length of I/p and O/p are not necessarly same. E.g. 

Machine Translation, Summarization, Question Answering etc.
● For many application length of O/p is not known.
● Non-monotone mapping: Reordering of words.
● Applications like PoS tagging, Named Entity Recognition does not require 

these capabilities.

43



Encode-Decode paradigm

Decoder

Encoder

Ram eats mango

राम आम खाता

<eos>

है <eos>

● English-Hindi Machine Translation
○ Source sentence: 3 words
○ Target sentecen: 4 words
○ Second word of the source sentence maps to 3rd & 4th words of the target sentence.
○ Third word of the source sentence maps to 2nd word of the target sentence

44



Problems with Encode-Decode paradigm
● Encoding transforms the entire sentence into a single vector.
● Decoding process uses this sentence representation for predicting the output.

○ Quality of prediction depends upon the quality of sentence embeddings.

● After few time steps decoding process may not properly use the sentence 
representation due to long-term dependancy.

● To imporve the quality of predictions we can
○ Improve the quality of sentence embeddings ‘OR’
○ Present the source sentence represenation for prediction at each time step. ‘OR’
○ Present the RELEVANT source sentence represenation for prediction at each time step.

45



Solutions
● To imporve the quality of predictions we can

○ Improve the quality of sentence embeddings ‘OR’
○ Present the source sentence represenation for prediction at each time step. ‘OR’
○ Present the RELEVANT source sentence represenation for prediction at each time step.

■ Encode - Attend - Decode (Attention mechanism)

46



Attention Mechanism
● Represent the source sentence by the set of output vectors from the 

encoder.
● Each output vector (OV) at time t is a contexual representation of the input 

at time t.

Ram eats mango <eos>

OV1 OV2 OV3 OV4

47



Attention Mechanism
● Each of these output vectors (OVs) may not be equally relevant during 

decoding process at time t.
● Weighted average of the output vectors can resolve the relevancy.

○ Assign  more weights to an output vector that needs more attention during decoding at time t.

● The weighted average context vector (CV) will be the input to decoder along 
with the sentence representation.

○ CVi = ∑ aij . OVj

where aij = weight of the j
th OV

Ram eats mango <eos>

48



Attention Mechanism

Ram eats mango <eos>

Attention
Decoder

Encoder

CV

at1 at2 at3
at4

Decoder takes two inputs:
● Sentence vector
● Attention vector
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Attention Mechanism
राम

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=1
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Attention Mechanism
राम आम

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=2
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Attention Mechanism
राम आम खाता

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=3
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Attention Mechanism
राम आम खाता है

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=4
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Attention Mechanism

Ram eats mango <eos>

राम आम खाता है <eos>

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=5
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Few good reads..
● Denny Britz; Recurrent Neural Networks Tutorial, Part -

http://www.wildml.com/ / 9/recurrent-neural-networks-tutorial-part- -introducti
on-to-rnns/

● Andrej Karpathy; The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/ / / /rnn-effectiveness/

● Chris Olah; Understanding LSTM Networks
http://colah.github.io/posts/ - 8-Understanding-LSTMs/
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Thank You!
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Outline

● Motivation
● What are Siamese Networks?
● Siamese Networks and NLP 
● Summary
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Motivation
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Motivation
● Given a ( input, target ) pairs, the goal is to learn a discriminative function 

which maps the input pattern to target label
● Some tasks like Face recognition have large number of classes
● Some classes have very less number of samples
● Supervised systems require large number of examples for each category

Usually approaches like k-nearest neighbors are used, where the test instance is 
compared with prototypes of each class

4



Motivation

● To use something like a nearest neighbour we need to define a distance 
metric

● Distance metric like Euclidean distance works well for well-defined features
● Given two facial images of the same person with slightly different orientation, 

euclidean distance fails

Usually approaches like k-nearest neighbors are used, where the test 
instance is compared with prototypes of each class

5



Siamese Networks

● Euclidean space as a distance metric might fail in the input space
● However, if we map the input to some semantic space where the Euclidean 

distance is well-defined
● The task is to learn the mapping from the data

Goal: Find a function f, which maps the input patterns to a target space 
such that Euclidean distance approximates the semantic distance in the 
input space [Chopra et.al 2005]

6



Siamese Networks

Goal: Find a function f, which maps the input patterns to a target space 
such that Euclidean distance approximates the semantic distance in the 
input space [Chopra et.al 2005]

There is a Deep Learning Tutorial at ICON DL Tutorial is scheduled @ ICON

[1  1  1  1  1  1  1  1  0  0  0] [0  1  0  0  0  1  0  1  1  1  1]

Euclidean Distance

2.8284 7



Siamese Networks

Goal: Find a function f, which maps the input patterns to a target space 
such that Euclidean distance approximates the semantic distance in the 
input space [Chopra et.al 2005]

There is a Deep Learning Tutorial at ICON DL Tutorial is scheduled @ ICON

[1  1  1  1  1  1  1  1  0  0  0] [0  1  0  0  0  1  0  1  1  1  1]

Euclidean Distance

2.8284

Accounts for 
lexical overlap 
between the 

two sentences
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Siamese Networks
Goal: Find a function f, which maps the input patterns to a target space 
such that Euclidean distance approximates the semantic distance in the 
input space [Chopra et.al 2005]

There is a Deep Learning Tutorial at ICON DL Tutorial is scheduled @ ICON

Euclidean Distance

0.1005

Find a projection 
such that the 

semantic distance is 
well captured in that 

space
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What are Siamese Networks?
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Siamese Networks

Goal: Find a function f, which maps the input patterns to a target space 
such that Euclidean distance approximates the semantic distance in the 
input space [Chopra et.al 2005]

Given examples X1 and X2 input examples, find a function parameterized by W such that,

The distance is small for examples from same category and large for examples from different 
category
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Siamese Networks
Testing [Chopra et.al 2005]

● The network would learn a function which projects the inputs patterns to a space 
where semantic distance between instances are well-defined

● We can obtain semantic vectors for all instances belonging to a particular 
category

● Assume the semantic vector forms a multivariate normal density
● Construct a model for every category by taking the mean semantic vector and the 

variance-covariance matrix
● For every test instance, we get a probability score
● Define imposter instances (negative instances) and calculate the probability score 

for all imposter instances and take their average
● The final prediction depends on how well the test image is far to the imposter 

instances
12



Applications to NLP Tasks
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Sentence Similarity [Mueller et.al 2016]

Task: Given sentence pairs, assign a similarity score 

He is smart A truly wise man

exp( - || hm
(a) - hn

(b) || )

y

14



Sentence Similarity [Mueller et.al 2016]

Task: Given sentence pairs, assign a similarity score 

15

Manhattan 
distance is used 

here



Sentence Similarity [Mueller et.al 2016]

● The model was trained on Sentence Similarity task using SICK dataset
● The dataset contains 9927 sentence pairs each annotated with relatedness 

label  ∈ [1,5]

● Each pair was judged by 10 annotators and the average relatedness was 
taken was the similarity judgement

16



Sentence Similarity [Mueller et.al 2016]

● The model was trained on Sentence Similarity task using SICK dataset
● The dataset contains 9927 sentence pairs each annotated with relatedness 

label  ∈ [1,5]

● Each pair was judged by 10 annotators and the average relatedness was 
taken was the similarity judgement
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Sentence Similarity [Mueller et.al 2016]

Network Architecture

● Google pre-trained word embeddings were used
● Words in the sentences were randomly replaced by one of their synonyms 

from Wordnet
● The LSTM uses 50-dimensional hidden representations
● Adadelta with gradient clipping were used for training

18



Sentence Similarity [Mueller et.al 2016]

Results
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Sentence Similarity [Mueller et.al 2016]

Results
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Sentence Similarity [Mueller et.al 2016]

Entailment Classification

● Applied the model on SemEval 2014 textual entailment task
● The obtained representation from the LSTM layer is used as features to a 

classification system
● The LSTM layer was already trained on the sentence similarity tass
● Given a pair of sentences, first the representations hm

(a) and hn
(b)  are obtained 

from the LSTM layer
● The element-wise absolute difference | hm

(a) - hn
(b) | and element-wise dot 

product hm
(a) ⨀ hn

(b)  are used as features to a radial basis SVM classifier
● The LSTM layer parameters are not updated during training
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Sentence Similarity [Mueller et.al 2016]
Entailment Classification Results
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Thank You
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Questions?
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Representations for Learning Algorithms
Detect whether the following image is dog or not?

Basic idea: feed raw pixels as input vector
Works well:

Inherent structure in the image

Detect whether a word is a dog or not?
Labrador

Nothing in spelling of labrador that can connect it to dog
Need a representation of labrador which indicates that it is a
dog
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Local Representations

Information about a particular item located solely in the
corresponding representational element (dimension)
Effectively one unit is turned on in a network, all the others
are off
No sharing between represented data
Each feature is independent
No generalization on the basis of similarity between features
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Distributed Representations

Information about a particular item distributed among a set of
(not necessarily) mutually exclusive representational elements
(dimensions)

One item spread over multiple dimensions
One dimension contributing to multiple items

A new input is processed similar to samples in training data
which were similar

Better generalization
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Distributed Representations: Example

Number Local Representation Distributed Representation
0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1
2 0 0 1 0 0 0 0 0 0 1 0
3 0 0 0 1 0 0 0 0 0 1 1
4 0 0 0 0 1 0 0 0 1 0 0
5 0 0 0 0 0 1 0 0 1 0 1
6 0 0 0 0 0 0 1 0 1 1 0
7 0 0 0 0 0 0 0 1 1 1 1
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Word Embeddings : Intuition
Word Embeddings: distributed vector representations of words
such that the similarity among vectors correlate with semantic
similarity among the corresponding words

Given that sim(dog, cat) is more than sim(dog, furniture),
cos(−→dog, −→cat) is greater than cos(−→dog, −−−−−→furniture)

Such similarity information uncovered from context

Consider the following sentences:
I like sweet food .
You like spicy food .
They like xyzabc food .

What is xyzabc ?
Meaning of words can be inferred from their neighbors
(context) and words that share neighbors

Neighbors of xyzabc: {like, food}
Words that share neighbors of xyzabc: {sweet, spicy}
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Modelling Meaning via Word Embeddings

Geometric metaphor of meaning
(Sahlgren, 2006):

Meanings are locations in
semantic space, and semantic
similarity is proximity between
the locations.

Distributional Hypothesis (Harris,
1970)

Words with similar distributional
properties have similar meanings
Only differences in meaning
can be modelled
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Entire Vector vs. Individual dimensions

Only proximity in the entire space is represented
No phenomenological correlations with dimensions of
high-dimensional space (in majority of algorithms)

Those models who do have some correlations, are known as
interpretable models
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Modelling Meaning via Word Embeddings

Co-occurrence matrix (Rubenstein and Goodenough, 1965)
A mechanism to capture distributional properties
Rows of co-occurrence matrix can be directly considered as
word vectors

Neural Word Embeddings
Vector representations learnt using neural networks - Bengio
et al. (2003); Collobert and Weston (2008a); Mikolov et al.
(2013b)
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Co-occurrence Matrix

Originally proposed by Schütze (1992)
Foundation of count based approaches that follow
Automatic derivation of vectors
Collect co-occurrence counts in a matrix
Rows or columns are the vectors of corresponding word
If counting in both directions, matrix is symmetrical
If counting in one side, matrix is asymmetrical, and is known
as directional co-occurrence
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Co-occurrence Matrix (contd.)
<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Co-occurrence Matrix

word <> I like love hate rate rats cats dogs bats
<> 0 4 0 0 0 0 1 1 1 1

I 4 0 1 1 1 1 0 0 0 0
like 0 1 0 0 0 0 0 1 0 0
love 0 1 0 0 0 0 0 0 1 0
hate 0 1 0 0 0 0 1 0 0 0
rate 0 1 0 0 0 0 0 0 0 1
rats 1 0 0 0 1 0 0 0 0 0
cats 1 0 1 0 0 0 0 0 0 0
dogs 1 0 0 1 0 0 0 0 0 0
bats 1 0 0 0 0 1 0 0 0 0
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LSA

Latent Semantic Analysis
Originally developed as Latent Semantic Indexing (LSI)
(Dumais et al., 1988)
Adapted for word-space models
Developed to tackle inability of models of co-occurrence
matrices to handle synonymy

Query about hotels cannot retrieve results about motels
Words and Documents dimensions → Latent dimensions

Uses Singular Value Decomposition (SVD) for dimensionality
reduction
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LSA (contd.)

Words-by-documents matrix
Entropy based weighting of co-occurrences

fij = (log(TFij) + 1)× (1− (
∑

j
(
pijlogpij

logD ))) (1)

where D is number of documents, TFij is frequency of term i
in document j, fi is frequency of term i in document
collection, and pij =

TFij
fi

Truncated SVD to reduce dimensionality
Cosine measure to compute vector similarities
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HAL

Hyperspace Analogous to Language (Lund and Burgess,
1996a)
Developed specifically for word representations
Uses directional co-occurrence
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HAL (contd.)

Directional word by word matrix
Distance weighting of the co-occurrences
Concatenation of row-column vectors
Dimensionality reduction optional

Discard low variant dimensions

Normalization of vectors to unit length
Similarities computed through either Manhattan or Euclidean
distance
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NNLM

Neural Network Language Model
Proposed by Bengio et al. (2003)
Predict word given context
Word Vectors learnt as a by-product of language modelling
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NNLM: Original Model
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NNLM: Simplified (1)
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NNLM: Simplified (2)
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Skip Gram

Proposed by Mikolov et al. (2013b)
Predict Context given word
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Skip Gram (contd.)

Given a sequence of training words w1,w2, . . . ,wT, maximize

1

T

T∑

t=1

∑

−c≤j≤c,j
logp (wt+j|wt) (2)

where
p(wO|wI) =

exp(uT
wOvwI)∑W

w=1
exp(uT

wvwI)
(3)
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Global Vectors (GloVe)

Proposed by Pennington et al. (2014)
Predict Context given word
Similar to Skip-gram, but objective function is different

J =

V∑

i,j=1

f(Xij)(wT
i w̃j + bi + b̃j − logXij)

2 (4)

where Xij can be likelihood of ith and jth word occuring
together, and f is a weightage function
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Tuning word embeddings

Techniques which intend to tune already trained word
embeddings to various tasks using additional information
Ling et al. (2015) improve quality of word2vec for syntactic
tasks such as POS

Take word positioning into account
Structured Skip-Gram and Continuous Windows: available as
wang2vec

Levy and Goldberg (2014) use dependency parse trees
Linear windows capture broad topical similarities, and
dependency context captures functional similarities

Patel et al. (2017) use medical code hierarchy to improve
medical domain specific word embeddings
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Objective
English data >> Data for other languages
Language independent phenomenon learnt on English should
be applicable to other languages
Solution via word embeddings:

Project words of different languages into a common subspace
Goal of multilingual word embeddings: Shared subspace for all
languages
Neural MT learns such embeddings implicitly by optimizing
the MT objective
We shall discuss explicit models

These models are for MT what word2vec, GloVe are for NLP
Much lower cost of training as compared to Neural MT

Applications: Machine Translation, Automated Bilingual
Dictionary Generation, Cross-lingual Information Retrieval,
etc.
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Types of Cross-lingual Embeddings

Based on the underlying approaches:
Monolingual mapping
Cross-lingual training
Joint optimization

Based on the resource used:
Word-aligned data
Sentence-aligned data
Document-aligned data
Lexicon
No parallel data
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Monolingual Mapping

Learning in two step:
Train separate embeddings we and wf on large monolingual
corpora of corresponding languages e and f
Learn transformations g1 and g2 such that we = g1(wf) and
wf = g2(we)

Transformations learnt using bilingual word mappings (lexicon)
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Monolingual Mapping (contd.)

Linear Projection proposed by Mikolov et al. (2013a)

Learn matrix W s.t

we ≈ W.wf

which minimizesn∑
i=1

∥Wwf − we∥2

We adapted this method for automatic synset linking in
multilingual wordnets (accepted at GWC 2018)
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Monolingual Mapping (Contd.)

Linear projection (Mikolov et al., 2013a): Lexicon
Projection via CCA (Faruqui and Dyer, 2014b): Lexicon
Alignment-based projection (Guo et al., 2015): Word-aligned
data
Adversarial auto-encoder (Barone, 2016): No parallel data
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Cross Lingual Training

Goal: optimizing cross-lingual objective
Mainly rely on sentence alignments
Require parallel corpus for training
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Cross Lingual Training (contd.)

Bilingual Compositional
Sentence Model proposed by
Hermann and Blunsom
(2013)
Train two models to produce
sentence representations of
aligned sentences in two
languages
Minimize distance between
sentence representations of
aligned sentences
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Cross Lingual Training (contd.)

Bilingual compositional sentence model (Hermann and
Blunsom, 2013): Sentence-aligned data
Distributed word alignment (Kočiskỳ et al., 2014):
Sentence-aligned data
Translation-invariant LSA (Huang et al., 2015): Lexicon
Inverted Indexing on Wikipedia (Søgaard et al., 2015):
Document-aligned data
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Joint Optimization

Jointly optimize both monolingual M and cross-lingual Ω
constraints
Objective: minimize Ml1 + Ml2 + λ.Ωl1→l2 +Ωl2→l1
where λ decides weightage of cross-lingual constraints
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Joint Optimization (contd.)

Multitask Language Model proposed by Klementiev et al.
(2012):

Train neural language model (NNLM)
Jointly optimize monolingual maximum likelihood (M) with
word alignment based MT regularization term (Ω)
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Joint Optimization (contd.)

Multi-task language model (Klementiev et al., 2012):
Word-aligned data
Bilingual skip-gram (Luong et al., 2015): Word-aligned data
Bilingual bag-of-words without alignment (Gouws et al.,
2015): Sentence-aligned data
Bilingual sparse representations (Vyas and Carpuat, 2016):
Word-aligned data
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Interpretability and Explainability

A model is interpretable if a human can make sense out of it
Example: Decision trees
Interpretable models enable one to explain the performance of
the system and tune it accordingly
However, in practice, interpretable models generally perform
poor compared to other systems
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Interpretable Word Embeddings
Dimensions interpretable by ordering words based on value

Word d205

iguana 0.599371
bueller 0.584335
chimpanzee 0.577834
wasp 0.556845
chimp 0.553980
hamster 0.534810
giraffe 0.532316
unicorn 0.529533
caterpillar 0.528376
baboon 0.526324
gorilla 0.521590
tortoise 0.519941
sparrow 0.516842
lizard 0.515716
cockroach 0.505015
crocodile 0.491139
alligator 0.486275
moth 0.471682
kangaroo 0.469284
toad 0.463514

Word d272

thigh 0.875286
knee 0.872282
shoulder 0.866209
elbow 0.857403
wrist 0.852959
ankle 0.851555
groin 0.841347
forearm 0.837988
leg 0.836661
pelvis 0.777564
neck 0.758420
spine 0.754774
torso 0.707458
hamstring 0.701921
buttocks 0.689092
knees 0.676485
ankles 0.658485
jaw 0.653126
biceps 0.650972
hips 0.647000

Examples from NNSE embeddings Murphy et al. (2012)

Kevin Patel Word Embeddings 43/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

NNSE
Non Negative Sparse Embeddings proposed by Murphy et al.
(2012)
Word embeddings interpretable and cognitively plausible
Performs a mixture of topical and taxonomical semantics
Computation

Dependency co-occurrence adjusted with PPMI (to normalize
for word frequency) and reduced with sparse SVD
Document co-occurrence adjusted with PPMI and reduced
with sparse SVD
Their union factorized using a variant of non-negative sparse
coding

Resulting word embeddings have both topical neighbors
(judge is near to prison) and taxonomical neighbors (judge is
near to referee)
Code unavailable, embeddings available at
http://www.cs.cmu.edu/~bmurphy/NNSE/
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OIWE

Online Interpretable Word Embeddings proposed by Luo et al.
(2015)
Main idea: apply sparsity to skip gram
Achieve sparsity by setting to 0 any dimensions of a vector
that falls below 0
Propose two techniques to do this via gradient descent
They outperform NNSE at word intrusion task
Code available on Github at
https://github.com/SkTim/OIWE
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Word Pair Similarity

Evaluates generalizability of word embeddings
One of the most widely used evaluations
Many datasets available: WS353, RG65, MEN, SimLex,
SCWS, etc.

Word1 Word2 Human
Score

Model1
Score

Model2
Score

street street 10.00 1.0 1.0
street avenue 8.88 0.04 0.38
street block 6.88 0.14 0.26
street place 6.44 0.21 0.18
street children 4.94 -0.08 0.15
Spearman Correlation 0.6 1.0
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Word Analogy task

Proposed by Mikolov et al. (2013b)
Try to answer the question
man is to woman as king is to ?
Often discussed in media
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Categorization

Evaluates the ability of embeddings to form proper clusters
Given sets of words with different labels, try to cluster them,
and check the correspondence between clusters and sets.
The purer the cluster, the better is the embeddings
Datasets available: Bless, Battig, etc.
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Word Intrusion Detection

Proposed by Murphy et al. (2012)
Provides a way to interpret dimensions
Most approaches do not report results on this task

Experiments done by us suggest many of them are not
interpretable
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Word Intrusion Detection (contd.)

The approach:
...1 Select a dimension
...2 Reverse sort all vectors based on this dimension
...3 Select top 5 words
...4 Select a word, which is in bottom half of this list, and is in top

10 percentile in some other columns
...5 Give a random permutation of these 6 words to a human

evaluator
Example: {bathroom, closet, attic, balcony, quickly, toilet}

...6 Check precision
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Extrinsic Evaluations

Evaluating word embeddings on downstream NLP tasks such
as Part of speech tagging, Named Entity Recognition, etc.
Makes more sense as we ultimately want to use embeddings
for such tasks
However, performance does not solely rely on embeddings

Improvement/Degradation could be due to other factors such
as network architecture, hyperparameters, etc.

If an embedding E1 is better than another embedding E2

when used with some network architecture for NER, does that
mean E1 will be better for all architectures of NER?
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Evaluations on Unified Architectures

Unified architectures such as Collobert and Weston (2008b)
used for extrinsic evaluations
For different tasks, the architecture remains same, except the
last layer, where the output neurons are changed according to
the task at hand
If an embedding E1 is better than another embedding E2 on
all tasks on such a unified architecture, then we can expect it
to be truly better
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WordVectors.org

Proposed by Faruqui and Dyer (2014a)
A web interface for evaluating a collection of word pair
similarity datasets on your embeddings available at
http://wordvectors.org/
Also provides visualization for common sets of words like
(Male,Female) and (Antonym,Synonym) pairs
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VecEval

Proposed by Nayak et al. (2016)
A web based tool for performing extrinsic evaluations
http://www.veceval.com/
Claimed to support six different tasks: POS, NER, Chunking,
Sentiment Analysis, Natural Language Inference, Question
Answering
Has never worked for me
Web interface no longer available inactive, code available on
Github at https://github.com/NehaNayak/veceval
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Anago

A Keras implementation of sequence labelling based on
Lample et al. (2016)’s architecture
Can perform POS, NER, SRL, etc.
Used in our lab for extrinsic evaluation
Code available on Github at
https://github.com/Hironsan/anago
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Visualizing Word Embeddings

Various ways to visualize word embeddings: PCA, Isomap,
tSNE, etc., available in scikit-learn

from sklearn import decomposition, manifold
vis = decomposition.TruncatedSVD(n_components=2) - PCA
E_vis = vis.fit_transform( E)
plot E_vis here

Check out http://scikit-learn.org/stable/auto_
examples/manifold/plot_lle_digits.html for many
methods applied to MNIST visualization
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Related Work

Baroni et al. (2014): Neural word embeddings are better than
traditional methods such as LSA, HAL, RI (Landauer and
Dumais, 1997; Lund and Burgess, 1996b; Sahlgren, 2005)
Levy et al. (2015): Superiority of neural word embeddings not
due to the embedding algorithm, but due to certain design
choices and hyperparameters optimizations

Varies other hyperparameters; keeps number of dimensions =
500

Schnabel et al. (2015); Zhai et al. (2016); Ghannay et al.
(2016): No justification for chosen number of dimensions in
their evaluations
Melamud et al. (2016): Optimal number of dimensions
different for different evaluations of word embeddings
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Why Dimensions matter?: A Practical Example

Various app developers want to utilize word embeddings
Example memory limit for app: 200 MB
Size of Google Pre-trained vectors file: 3.4 GB
Natural thought process: decrease dimensions

To what value? 100? 50? 20?

Depends on the words/entities we want to place in the space
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Number of Dimensions and Equidistant points
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Number of Dimensions and Equidistant points
Number of dimensions of a vector space imposes a restriction
on the number of equidistant points it can have
Given that distance is euclidean, if the number of dimensions
λ = N, then maximum number of equidistant points E in the
corresponding space is N + 1 (Swanepoel, 2004)
Given that distance is cosine, no closed form solution exists

Dimensions λ and max. no. of equiangular lines E(Barg and Yu, 2014)
λ E λ E
3 6 18 61
4 6 19 76
5 10 20 96
6 16 21 126

7<=n<=13 28 22 176
14 30 23 276
15 36 24<=n<=41 276
16 42 42 288
17 51 43 344
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Objective

.Problem Statement..

......
Does the number of pairwise equidistant words enforce a lower
bound on the number of dimensions for word embeddings?

’Equidistance’ determined using co-occurrence matrix
Plan of Action:

Verify using a toy corpus
Evaluate on actual corpus
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Motivation (1/4)

Consider the following toy corpus:
<>I like cats <>I love dogs <>I hate rats <>I rate bats <>
Corresponding co-occurrence matrix:

word <> I like love hate rate rats cats dogs bats
like 0 1 0 0 0 0 0 1 0 0
love 0 1 0 0 0 0 0 0 1 0
hate 0 1 0 0 0 0 1 0 0 0
rate 0 1 0 0 0 0 0 0 0 1

Distance between any pair of words =
√
2

The words form a regular tetrahedron
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Motivation (2/4)
Mean and Std Dev of Mean of a point’s distance with other points

Dimension Mean Stddev
1 0.94 0.94
2 1.77 0.80
3 2.63 0.10
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Motivation (3/4)
Hypothesis:

If the learning algorithm of word embeddings does not get
enough dimensions, then it will fail to uphold the equality
constraint

Standard deviation of the mean of all pairwise distances will be
higher

As we increase the dimension, the algorithm will get more
degrees of freedom to model the equality constraint in a
better way

There will be statistically significant changes in the standard
deviation

Once the lower bound of dimensions is reached, the algorithm
gets enough degrees of freedom.

From this point onwards, even if we increase dimensions, there
will not be any statistically significant difference in the
standard deviation
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Motivation (4/4)

Dim σ P-value Dim σ P-value
7 0.358 12 0.154 0.0058
8 0.293 0.0020 13 0.111 0.0001
9 0.273 0.0248 14 0.044 0.0001

10 0.238 0.0313 15 0.047 0.3096
11 0.189 0.0013 16 0.054 0.1659

Avg standard deviation (σ) for 15 pairwise equidistant words (along with
two tail p-values of Welch’s unpaired t-test for statistical significance)
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Approach (1/5)
1. Compute the word × word co-occurrence matrix from the corpus

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

word <> I like love hate rate rats cats dogs bats
<> 0 4 0 0 0 0 1 1 1 1

I 4 0 1 1 1 1 0 0 0 0
like 0 1 0 0 0 0 0 1 0 0
love 0 1 0 0 0 0 0 0 1 0
hate 0 1 0 0 0 0 1 0 0 0
rate 0 1 0 0 0 0 0 0 0 1
rats 1 0 0 0 1 0 0 0 0 0
cats 1 0 1 0 0 0 0 0 0 0
dogs 1 0 0 1 0 0 0 0 0 0
bats 1 0 0 0 0 1 0 0 0 0
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Approach (2/5)
2. Create the corresponding word × word cosine similarity matrix

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

<> I like love hate rate rats cats dogs bats
<> 1.0 0.0 0.8 0.8 0.8 0.8 0.0 0.0 0.0 0.0

I 0.0 1.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8
like 0.8 0.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.0
love 0.8 0.0 0.5 1.0 0.5 0.5 0.0 0.0 0.0 0.0
hate 0.8 0.0 0.5 0.5 1.0 0.5 0.0 0.0 0.0 0.0
rate 0.8 0.0 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0
rats 0.0 0.8 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5
cats 0.0 0.8 0.0 0.0 0.0 0.0 0.5 1.0 0.5 0.5
dogs 0.0 0.8 0.0 0.0 0.0 0.0 0.5 0.5 1.0 0.5
bats 0.0 0.8 0.0 0.0 0.0 0.0 0.5 0.5 0.5 1.0

Kevin Patel Word Embeddings 71/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

Approach (3/5)
3. For each similarity value sk, create a graph, where the words are

nodes, and an edge between node i and node j if sim( i, j) = sk

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim=0.0
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Approach (3/5)
3. For each similarity value sk, create a graph, where the words are

nodes, and an edge between node i and node j if sim( i, j) = sk

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim=0.5
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Approach (3/5)
3. For each similarity value sk, create a graph, where the words are

nodes, and an edge between node i and node j if sim( i, j) = sk

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim=0.8
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Approach (3/5)
3. For each similarity value sk, create a graph, where the words are

nodes, and an edge between node i and node j if sim( i, j) = sk

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim=1.0
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Approach (4/5)
4. Find maximum clique on this graph. The number of nodes in
this clique is the maximum number of pairwise equidistant points

Ek

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim Ek
0.5 4

0.8 0
1.0 0
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Approach (5/5)
5. Reverse lookup Ek to get the number of dimension λ

<> I like cats <> I love dogs <> I hate rats <> I rate bats <>

Sim Ek
0.5 4
0.8 0
1.0 0

Max 4

λ E λ E
3 6 18 61
4 6 19 76
5 10 20 96
6 16 21 126

7<=n<=13 28 22 176
14 30 23 276
15 36 24<=n<=41 276
16 42 42 288
17 51 43 344
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Evaluation

Used Brown Corpus
Found 19 as lower bound using our approach
Context window: 1 to the left and 1 to the right
Number of dimensions: 1 to 35
5 randomly initialized models for each configuration (average
results reported)
Intrinsic Evaluation

Word Pair Similarity: Predicting sim(wa,wb) using
corresponding word embeddings
Word Analogy: Finding missing wd in the relation: a is to b as
c is to d
Categorization: Checking the purity of clusters formed by word
embeddings
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Results

Performance for Word Pair Similarity task with respect to number of
dimensions
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Results

Performance for Word Analogy task with respect to number of dimensions
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Results

Performance for Categorization task with respect to number of
dimensions
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Analysis
Found lower bound consistent with experimental evaluation

Poltawa snakestrike burnings Tsar’s
miswritten brows maintained South-East
far-famed 27% non-dramas octagonal
boatyards U-2 Devol mourners
Hearing sideshow third-story upcoming
pram dolphins Croydon neuromuscular
Gladius pvt littered annoying
vuhranduh athletes eraser provincialism
Daly wreaths villain suspicious
nooks fielder belly Gogol’s
interchange two-to-three resemble discounted
kidneys Hangman’s commend accordion
summarizing optimality Orlando Leamington
swift Taras-Tchaikovsky puts groomed
spit firmer rosy-fingered Bechhofer
campfire Tomas

Set of pairwise equiangular points (vectors) from Brown corpus
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Limitations

The Max Clique finding component of the approach
Renders approach intractable for larger corpora
Need to find an alternative
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Applications of Word Embeddings
Are Word Embeddings Useful for Sarcasm Detection?
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Problem Statement

Detect whether a sentence is sarcastic or not?
Especially among those sentences which do not contain
sentiment bearing words

Example: A woman needs a man just like a fish needs a bicycle
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Motivation

Similarity measure among word embeddings a proxy for
measuring contextual incongruity
Example: A woman needs a man just like a fish needs a bicycle

similarity(man,woman) = 0.766
similarity(fish,bicycle) = 0.131

Imbalance in similarities above an indication of contextual
incongruity
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Approach

Gist of the approach is adding similarity of word embeddings
based features, such as

Maximum similarity between all pairs of words in a sentence
Minimum similarity between all pairs of words in a sentence
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Evaluation
...1 Liebrecht et al. (2013): They consider unigrams, bigrams

and trigrams as features.
...2 González-Ibánez et al. (2011): Two sets of features:

unigrams and dictionary-based.
...3 Buschmeier et al. (2014):

Hyperbole (captured by 3 positive or negative words in a row)
Quotation marks and ellipsis
Positive/Negative Sentiment words followed by an exclamation
or question mark
Positive/Negative Sentiment Scores followed by ellipsis (‘...’)
Punctuation, Interjections, and Laughter expressions.

...4 Joshi et al. (2015): In addition to unigrams, they use
features based on implicit and explicit incongruity

Implicit incongruity features - patterns with implicit sentiment
, extracted in a pre-processing step.
Explicit incongruity features - number of sentiment flips, length
of positive and negative sub-sequences and lexical polarity.
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Results

Word Embedding Average F-score Gain
LSA 0.453
Glove 0.651

Dependency 1.048
Word2Vec 1.143

Average gain in F-scores for the four types of word embeddings; These
values are computed for a subset of these embeddings consisting of words
common to all four
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Applications of Word Embeddings
Iterative Unsupervised Most Frequent Sense Detection using

Word Embeddings
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WordNet

Groups synonymous words into synsets
Synset example:

Synset ID: 02139199
Synset Members: { bat, chiropteran }
Gloss: nocturnal mouselike mammal with forelimbs modified to
form membranous wings and anatomical adaptations for
echolocation by which they navigate
Example: Bats are creatures of the night.

Relations with other synsets (hypernym/hyponym:
parent/child, meronym/holonym: part/whole)
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Introduction

Word Sense Disambiguation (WSD) : one of the relatively
hard problems in NLP

Both supervised and unsupervised ML explored in literature
Most Frequent Sense (MFS) baseline: strong baseline for
WSD

Given a WSD problem instance, simply assign the most
frequent sense of that word

Ignores context
Really strong results

Due to skew in sense distribution of data
Computing MFS:

Trivial for sense-annotated corpora, which is not available in
large amounts.
Need to learn from raw data
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Problem Statement
.Problem Statement..

......
Given a raw corpus, estimate most frequent sense of different
words in that corpus

Bhingardive et al. (2015) showed that pretrained word
embeddings can be used to compute most frequent sense
Our work further strengthens the claim by Bhingardive et al.
(2015) that word embeddings indeed capture most frequent
sense
Our approach outperforms others at the task of MFS
extraction
To compute MFS using our approach:

...1 Train word embeddings on the raw corpus.

...2 Apply our approach on the trained word embeddings.
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Intuition

Strive for consistency in assignment of senses to maintain
semantic congruity
Example:

If cricket and bat co-occur a lot, then cricket taking insect
sense and bat taking reptile sense is less likely

If cricket and bat co-occur a lot, and cricket’s MFS is sports,
then bat taking reptile sense is extremely unlikely

Key point: solve easy words, then use them for difficult words
In other words, iterate over degree of polysemy from 2 onward
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Strive for consistency in assignment of senses to maintain
semantic congruity
Example:

If cricket and bat co-occur a lot, then cricket taking insect
sense and bat taking reptile sense is less likely
If cricket and bat co-occur a lot, and cricket’s MFS is sports,
then bat taking reptile sense is extremely unlikely

Key point: solve easy words, then use them for difficult words
In other words, iterate over degree of polysemy from 2 onward
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Algorithm
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Algorithm

wisj is vote for sj due to wi
Two components

Wordnet similarity between mfs(wi) and sj
Embedding space similarity between wi and current word

Kevin Patel Word Embeddings 90/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

Algorithm

Kevin Patel Word Embeddings 90/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

Algorithm

Kevin Patel Word Embeddings 90/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

Parameters

K
Similarity Measure
Unweighted (no vector space component) vs. Weighted
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Evaluation

Two setups:
Evaluating MFS as solution for WSD
Evaluating MFS as a classification task
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MFS as solution for WSD

Method Senseval2 Senseval3
Bhingardive(reported) 52.34 43.28
SemCor(reported) 59.88 65.72
Bhingardive 48.27 36.67
Iterative 63.2 56.72
SemCor 67.61 71.06

Accuracy of WSD using MFS (Nouns)
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MFS as solution for WSD (contd.)

Method Senseval2 Senseval3
Bhingardive(reported) 37.79 26.79
Bhingardive(optimal) 43.51 33.78
Iterative 48.1 40.4
SemCor 60.03 60.98
Accuracy of WSD using MFS (All Parts of Speech)
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MFS as classification task

Method Nouns Adjectives Adverbs Verbs Total
Bhingardive 43.93 81.79 46.55 37.84 58.75
Iterative 48.27 80.77 46.55 44.32 61.07

Percentage match between predicted MFS and WFS

Kevin Patel Word Embeddings 95/100



Introduction Word Embeddings Evaluating Word
Embeddings

Discussion on Lower
Bounds

Applications of
Word Embeddings

Conclusion References

.

MFS as classification task (contd.)

Nouns
(49.20)

Verbs
(26.44)

Adjectives
(19.22)

Adverbs
(5.14) Total

Bhingardive 29.18 25.57 26.00 33.50 27.83
Iterative 35.46 31.90 30.43 47.78 34.19

Percentage match between predicted MFS and true SemCor MFS. Note
that numbers in column headers indicate what percent of total words
belong to that part of speech
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Analysis
Better than Bhingardive et al. (2015); not able to beat
SemCor and WFS.

There are words for which WFS doesn’t give proper dominant
sense. Consider the following examples:

tiger - an audacious person
life - characteristic state or mode of living (social life, city life,
real life)
option - right to buy or sell property at an agreed price
flavor - general atmosphere of place or situation
season - period of year marked by special events

Tagged words ranking very low to make a significant impact.
For example:

While detecting MFS for a bisemous word, the first
monosemous neighbour actually ranks 1101
i.e. a 1000 polysemous words are closer than this monosemous
word.
Monosemous word may not be the one who can influence the
MFS.
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Summary

Proposed an iterative approach for unsupervised most
frequent sense detection using word embeddings
Similar trends, yet better overall results from Bhingardive
et al. (2015)
Future Work

Apply approach to other languages
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Conclusion

Discussed why we need word embeddings
Briefly looked at classical word embeddings
Discussed a few cross-lingual word embeddings and
interpretable word embeddings
Mentioned evaluation mechanisms and tools
Argued on existence of lower bounds for number of
dimensions of word embeddings
Discussed some in-house applications
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Thank You
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Sentiment Analysis

• Sentiment analysis aims to identify the orientation of opinion in a piece 
of text.

2



Why do we need Sentiment Analysis?

● What others think has always been an important piece of information.
● Overwhelming amounts of information on one topic: Manually reading or 

analysing all data is very inefficient.
● Baised/Fake reviews 
● An example

○ Mr. X needs to buy a phone. He was browsing amazon.in and found 1000 reviews for a 
particular phone.

Scenario 1: 
● Let there are 850 negative, 100 

positive and 50 neutral reviews
● Sentiment → Negative.

Scenario 2: 
● Let there are 420 negative, 480 

positive and 100 neutral reviews.
● Sentiment → Positive

What if all the 100 positive reviews are at the top? What if few of the reviews (e.g. 100) are fake? 3



Challenges
● Similar lexical features but different sentiments

○ यह मूवी अ छ  नह ं है। (This movie is not good.)
○ कोई भी मूवी इस से अ छ  नह ं हो सकती। (No movie can be better than this.)

● Different style of writing but same sentiment
○ सैमसंग का फ़ोन बहुत ह  बेकार है। (Samsung phone is extremely useless. )
○ सैमसंग फ़ोन पर मेरे पैसे बरबाद हो गए। (My money was wasted on Samsung phone. )
○ सैमसंग से अ छा म आईफ़ोन खर द लेता। (I could have bought Iphone instead of Samsung.}

4



Levels of sentiment analysis
● Document level

○ Overall sentiment of a document
○ A document consists of many sentences/paragraphs

● Sentence level
○ Sentiment of a stand alone sentence

● Phrase level
○ Sentiment towards a given phrase in a sentence

● Aspect level
○ Sentiment towards an attribute/feature/aspect of a sentence.
○ Aspect is an attribute or component of the product that has been commented on in a review
○ Sentiment targets helps us to understand the sentiment analysis problem better.

Increasing level of 
information

5



Sentence level v/s Aspect level

● Sentence level
○ इसक  बैटर  शानदार है, ले कन कैमरा बहुत ह  ख़राब है। (Its battery is awesome but camera is very 

poor.)
○ Sentiment: Both positive and negative →  conflict

● Aspect level
○ इसक  बैटर  शानदार है, ले कन कैमरा बहुत ह  ख़राब है। (Its battery is awesome but camera is very 

poor.)
○ Aspect terms and their sentiments: 

■ बैटर  (battery) → positive
■ कैमरा (camera) → negative

6



Sentence level v/s Aspect level
• Informed decision

○ Camcorder X
● The zoom is excellent, but the LCD is blurry.
● Great value for the price.
● Although the display is poor the picture quality is amazing.
● Batteries drain pretty quickly.
● I love this camera but for short battery life is definitely a pain.
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Sentiment Analysis: A boarder view

Sentiment Analysis

● Coarse-grained
● Fine-grained 

Aspect

● English
● Hindi
● French

● E-commerce
● Social Media
● Financial

● Feature Engg.
● Deep learning

● E-comm
● Politics
● Security

LanguagesLevels Domains Techniques Application

● Subjective
● Sarcasm
● Rumour

Related 
problems

8



Pre-deep learning approaches for 
Sentiment Analysis

(Traditional ML approaches)

9



A traditional classification pipeline

Feature Engineering Classification 
Algorithm

Document 
or 

sentence

Predictions
Positive / Negative / Neutral / Conflict

● Ngrams
● Presence or Absence 

of cue words
● Lexicons

● SVM
● Decision Tree

10



Deep Architectures for Sentiment 
Analysis

11



A typical deep learning solution

CNN / LSTM MLPDocument 
or 

sentence

Predictions

E
m

be
dd

in
gs
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A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional 
Neural Networks for Sentence Classification

Zhang, Y., Wallace, B. ; A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification; In Proceedings of the 8th International Joint 
Conference on Natural Language Processing (IJCNLP-2017); pages 253-263; Taipie, Taiwan; 2017.

1. Sentence matrix
a. embeddings of words

2. Convolution filters
a. Total 6 filters; Two each of size 

2, 3 & 4.
b. 6 feature maps for each filter

3. Pooling
a. 1-max pooling

4. Concatenate the max-pooled vector

5. Classification
a. Softmax 

13



RNN / LSTM for Sentiment Analysis

RNN RNN RNN RNN RNN RNN RNN

I liked this movie very much !

RNN RNN RNN RNN RNN RNN RNN

Fully connected layer / Dense layer

Output layer

14



Attention-based LSTM for Aspect-level Sentiment Classification

Yequan Wang, Minlie Huang, Li Zhao, Xiaoyan Zhu; Attention-based LSTM for Aspect-level Sentiment Classification; In Proceedings of the 2016 Conference on Empirical Methods in 
Natural Language Processing, pages 606–615, Austin, Texas; 2016.

Staffs are not that friendly, but the taste 
covers all.

● Aspects / Aspect Category
○ Service → negative
○ Food → positive

Instances and attentions:
1. {Staffs are not that friendly, but 

the taste covers all, Service} 
2. {Staffs are not that friendly, but 

the taste covers all, Food}

15



CNN / RNN

CNN / RNN with extra features

I liked this movie very much !

Fully connected layer / Dense layer

Output layer

Feature Extraction

16



A Hybrid Deep Learning Architecture for Sentiment Analysis

1. Training of a typical convolutional neural 
network (CNN)
• Obtain weight matrix

2. A multi-objective GA based optimization 
technique (MOGA) for extracting the 
optimized set of features
• Two objectives

• Accuracy (maximize)
• Num of features (minimize)

• Optimized feature set

3. Training of SVM with non-linear kernel 
utilizing the network trained in first step 
and optimized features

Md Shad Akhtar, Ayush Kumar, Asif Ekbal and Pushpak Bhattacharyya; A Hybrid Deep Learning Architecture for Sentiment Analysis; In proceedings of the 26th International Conference 
on Computational Linguistics (COLING 2016); 482–493; Osaka, Japan; 2016.
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A Multilayer Perceptron based Ensemble Technique for Fine-grained 
Financial Sentiment Analysis

Md Shad Akhtar, Abhishek Kumar, Deepanway Ghosal, Asif Ekbal and Pushpak Bhattacharyya; A Multilayer Perceptron based Ensemble Technique for Fine-grained Financial Sentiment 
Analysis; In proceedings of the 26th International Conference on Computational Linguistics (COLING 2016); 482–493; Osaka, Japan; 2016.

Sentiment 
Score

Word 
Embeddings

Feature 
Extraction

GRU

CNN

LSTM

SVR

In
pu

t T
ex

t

● Given a financial tweet, predict its sentiment 
score w.r.t. a company.
E.g: best stock: $WTS +15%

○ Company/Cashtag: WTS
○ Sentiment: Positive
○ Intensity score: 0.857

● Trained
○ Three DL methods:

■ LSTM, CNN & GRU
○ One feature driven

■ SVR
■ Tf-idf, lexicons

● Performance:
○ Numerically → Similar
○ Qualitative → Contrasting

18



Designing a Sentiment Analyzer 

19



Problem defintion
● Sentiment Analysis:

○ Given a sentence predicts its sentiment class.

● I/P: W1, W2, W3, …. Wn
● O/P: positive / negative 

Sentiment Analyzer

Positive/Negative

W1, W2, W3, …. Wn 20



Data Representation
● Convert sequence of words into some numeric representation (i.e. word 

embeddings)
○ Let dimension of each word be 300

● Let label representation be
○ Positive → 0
○ Negative → 1 Network

Positive Negative

<W1> <W2> <W3> …. <Wn>

Word vector of 300 dimension each 21



Data Representation - Train/Test file

Sentence (sequence of word embeddings) Label
(Positive: 0, Negative: 1)

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 0

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 1

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 1

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 0

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 1

...

<300 dim vector for W1> <300 dim vector for W2> <300 dim vector for W3> …. <300 dim vector for Wn> 0
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Implementation of a typical NN: Basic steps
1. Import necessary libraries
2. Design Network
3. Compile Network
4. Prepare/Load training data
5. Train the network
6. Evaluate the network

a. Prepare/Load testing data
b. Predict o/p
c. Print test and its prediction

23



Keras: A deep learning API
● Python based API
● Wrapper that support three packages at the backend 

○ Theano (supports ended recently)
○ TensorFlow
○ CNTK

● https://keras.io/

24
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Implementation using Keras: Import necessary libraries 1/6
import numpy # Numpy for mathematical ops

import keras # Keras main library

from keras.models import Sequential # Model type

from keras.layers import SimpleRNN, LSTM # Recurrent unit

from sklearn import metrics # For evaluation

25



Implementation using Keras: Design Network 2/6

w
0

w
1

w10

….

numInNeurons = 300
numOutNeurons = 2
numHiddentUnitsRecurrent = 100
numHiddentUnitsDense = 70
seqLength = 10

model = Sequential() # Instantiate sequential network
# Add a SimpleRNN Layer.
# input_dim is required only in the first layer of the network.
model.add(SimpleRNN(numHiddentUnits, 
input_shape=(seqLength, numInNeurons), 
return_sequences=true, activation='sigmoid'))
model.add(SimpleRNN(numHiddentUnits, activation='sigmoid'), 
return_sequences=false)
model.add(Dense(numHiddentUnitsDense, activation='tanh'))
# If we need to add more layers we have to call model.add() again. 
model.add(Dense(numOutNeurons, activation='softmax'))

Positive Negative

Fully connected / 
Dense layer 

Recurrent layer: Simple RNN / LSTM

….

….
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Implementation using Keras: Compile the network 3/6
model.compile(optimizer='sgd', loss='mse')

# Validate the network. If any issues (dimension mismatch etc.) are found, they will 
be reported.
# Optimization algorithm is stochastic gradient descent
# Loss is mean squared error

# At this point network is ready for training

27



Implementation using Keras: Prepare/Load training data 4/6
data_train = np.loadtxt(open(‘train_data.txt’,’r’))
label_train = np.loadtxt(open(‘train_label.txt’,’r’))

numTrainInst = 1000 # Number of instances in training data

data_train = data_train.reshape(numTrainInst, seqLength, numInNeurons)

# Input file has ‘numTrainInst’, each instance has ‘seqLength’ and each unit has 
dimension ‘numInNeurons’.
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Implementation using Keras: Train the network 5/6
model.fit(X, O, epochs=5, validation_split=0.2) # Train network for 5 epochs 

Epoch 1/5
800/800 [==============================] - 0s - loss: 0.4118 - val_loss: 0.4520
Epoch 2/5
800/800 [==============================] - 0s - loss: 0.4116 - val_loss: 0.4517
Epoch 3/5
800/800 [==============================] - 0s - loss: 0.4114 - val_loss: 0.4514
Epoch 4/5
800/800 [==============================] - 0s - loss: 0.4112 - val_loss: 0.4512
Epoch 5/5
800/800 [==============================] - 0s - loss: 0.4110 - val_loss: 0.4509

29



Training v/s Validation loss

Error

EpochsIdeal termination point
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Implementation using Keras: Evaluate the network 6/6
a. Prepare the test data

data_test = np.loadtxt(open(‘test_data.txt’,’r’))
label_test = np.loadtxt(open(‘test_label.txt’,’r’))
numTestInstances = 100
data_test = data_test.reshape(numTestInstances, seqLength, numInNeurons)

b. Compute predictions
● Predict probabilities

pred_probability = model.predict(data_test) # predict o/p prob.

● Predict o/p

prediction = model.predict_classes(data_test) # predict o/p 
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Implementation using Keras: Evaluate the network..(contd) 6/6
c. Print test, probability and its prediction

print (‘Test instances:’, data_test) 
print (‘Actual:’, label_test)
print (‘Prediction:’, prediction)
print (‘Prediction Probabilities:’, pred_probability)

d. Evaluate predictions
print('Accuracy: ' + metrics.accuracy_score(label_test , pred_test)) 
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Introduction
What is Named Entity Recognition?

● The task of identifying person names, location names, organization names 
and other miscellaneous entities in a given piece of text.

● Example: 
○ Malinga omitted from squad for Pakistan ODIs

Malinga will be tagged as Person and Pakistan as Location entity

3



You thought NER was trivial

4



Challenges
● Named Entities are ambiguous

○ I went to Washington
○ I met Washington

● Named Entities form an open class
○ Box8
○ Alphabet
○ .
○ .

5



Challenges
List of Unique/Crazy Person Names

● Ahmiracle
● Anna…
● I’munique
● Baby Girl
● Abcde
● North West
● Melanomia
● Heaven Lee
● Tu Morrow
● Moxie Crimefighter
● Abstinence

● Apple
● Facebook
● Danger
● Colon
● Mercury Constellation Starcuiser
● Pilot Inspektor
● Rage
● Billion
● Audio Science
● Sadman
● Hashtag

Source: http://www.momjunction.com/articles/worst-baby-names-in-the-world_00400377/#gref6



Traditional ML Approaches
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Vince’s Person

maiden O

test O

fifty O

keeps O

England Misc

ticking O

Mumbai Misc

drop O

Nayar Person

. .

Machine Learning NER Model
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Vince’s Person

maiden O

test O

fifty O

keeps O

England Team

ticking O

Mumbai Team

drop O

Nayar Person

. .

Machine Learning
*learn probabilities over 

words NER Model

P(Person | Vince’s)   = ?
P(Location | Vince’s) = ?
P(Team | Vince’s)      = ?
P(O | Vince’s)            = ?
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Problem Formulation
Given a word sequence ( w1 , w2 , … , wn ) find the most probable tag sequence     
( y1 , y2 , … , yn )

i.e, find the most probable entity label for every word in the sentence

y* =  P (  y1 , y2 , … , yn | w1 , w2 , … , wn ) Best Tag 
Sequence

Why sequence labeling and not classification task?
Sequence labeling performs better at identifying named entity phrases

10



Problem Formulation (CRF) 
Given a word sequence ( w1 , w2 , … , wn ) find the most probable tag sequence     
( y1 , y2 , … , yn )

P (  y | w ) = exp ( Σi=1
n Σk λk fk ( yt , yt-1 , x ) )  

Here, fk ( yt , yt-1 , x ) is a feature function whose weights λk needs to be learned during training

The feature function is used to define various features

11



Typical Features
● Word Features
● Subword Features
● Context Words
● POS Tag
● Gazetteers
● Suffix Gazetteers
● Handcrafted Features

○ Does the word begin with an uppercase character?
○ Contains any digits?
○ Contains special characters?

12



Why Deep Learning?

13



● Neural networks provide an hierarchical 

architecture

● Lower layers of the network can discover 

subword features 

● Layers above it can be used to discuss word 

specific features

● The higher layer can use the information 

coming from lower layers to identify named 

entities

Why Deep Learning?

Morphology

POS Tagging

NER Tagging

14



Word Embeddings

● Plot of word Spectral word embedding for 
words from English CoNLL 2003 test 
data

● Choose the most frequent named tag for 
every word

● We observe named entities of the same 
type forming a cluster in the embedding 
space

15



Deep Learning Solutions

16



● We have looked at various neural network architectures

● What are the important features for NER?

● What neural network architectures can we use to make the model learn these 
features?

17



Deep Learning Model for NER Timeline
Model Subword Word

CNN Bi-LSTM CNN Bi-LSTM

Hammerton [2003] ✔

Collobert et al. [2011] ✔

dos Santos et al. [2015] ✔ ✔

Huang et al. [2015] ✔

Chiu and Nichols [2016] ✔ ✔

Murthy and Bhattacharyya [2016] ✔ ✔

Lample et al. [2016] ✔ ✔

Ma and Hovy [2016] ✔ ✔

Yang et al. [2017] ✔ ✔ 18



Deep Learning Model for NER [ Murthy and Bhattacharyya [2016] ]
● Given a dataset D consisting of tagged sentences

○ Let X =  {x1, x2, … , xn} be the sequence of words in a sentence
○ Let Y =  {y1, y2, … , yn} be the sequence of corresponding tags

● Goal is to maximize the likelihood of the tag sequence given the word 
sequence

○ maximize P( Y | X)

○ maximize P( y1, y2, … , yn | x1, x2, … , xn )

○ maximize Ⲡi=1
n P ( yi |  x1, x2, … , xn yi-1 )    

● We maximize the log-likelihood for every tag sequence in the training data
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Deep Learning Architecture for NER

20



Deep Learning Architecture for NER
● The input to the model is words and the character sequence forming the word
● One-hot representation of the word is sent through a Lookup Table
● Lookup Table is initialized with pre-trained embeddings
● Additionally character sequence is fed to CNN to extract sub-word features
● The word embeddings and sub-word features are concatenated to get final 

word representation
● This representation is fed to a Bi-LSTM layer which disambiguates the word 

(w.r.t NER task) in the sentence
● Finally, the output from Bi-LSTM model is fed to softmax layer which predicts 

the named entity label

21



● Word embeddings represent words using d-dimensional real valued vector
● Word embeddings exhibit the property that named entities tend to form a 

cluster in the embedding space
● Providing word embedding features as input is more informative compared to 

the one-hot representation
● Word embeddings are updated during training

Word Embeddings

22



Subword Features
● We use multiple CNNs of varying width to extract sub-word features
● Every character is represented using one-hot vector representation
● The input is a matrix with ith row indicating the one-hot vector of ith character in 

the word
● The output of CNN is fed to max-pooling layer
● We extract 15-50 features from the CNN for every word
● This forms the sub-word features for the word

23



Subword Features
● This module should be able to discover various subword features
● The feature could be capitalization feature, affix features, presence of digits 

etc.

24



CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

How to go from 
variable length to 

fixed length 
representation?

25



CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

How to go from 
variable length to 

fixed length 
representation?

What are we 
expecting the 

Subword Feature 
Extractor to do?
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CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

How to go from 
variable length to 

fixed length 
representation?

What are we 
expecting the 

Subword Feature 
Extractor to do?

Cluster all words 
ending with the 

suffix “gad” 
together

^lo
loh
oha
hag
aga
gad
ad$
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CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

How to go from 
variable length to 

fixed length 
representation?

What are we 
expecting the 

Subword Feature 
Extractor to do?

Cluster all words 
ending with the 

suffix “gad” 
together

^lo
loh
oha
hag
aga
gad
ad$

Select most of the 
features from the 
ngrams gad and 

ad$
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CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

How to go from 
variable length to 

fixed length 
representation?

What are we 
expecting the 

Subword Feature 
Extractor to do?

Cluster all words 
ending with the 

suffix “gad” 
together

^lo
loh
oha
hag
aga
gad
ad$

Select most of the 
features from the 
ngrams gad and 

ad$

Use 
Max-Pooling
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CNNs to Extract Subword Features

Simple Linear layer looking 
at 3 characters at a time

l o h a g a d

W1 W2 W3

One-hot representation of 
the characters

^lo
loh
oha
hag
aga
gad
ad$

Max 
Pooling

30



CNNs to Extract Subword Features
● Use CNNs to extract various sub-word features
● By extracting, we mean word with similar features to be closer in the feature 

space
● The features could be capitalization features, similar suffixes, similar 

prefixes, all time expressions, etc.
● This is similar to say suffix embeddings except that the suffix pattern is 

discovered by the model

31



Subword Features

● Plot of subword features for different 
Marathi words

● We observe that the CNN was able to 
cluster words based on their suffixes

● The CNN model was able to cluster 
words with similar suffixes

32



Bi-LSTM Layer
● We have observed that both word embeddings and subword features are able 

to cluster similar words together
● All location names forming a cluster in word embedding space
● All words with similar suffixes forming a cluster in the sub-word feature space
● This acts as a proxy feature for suffix features used in traditional ML methods
● Till now we have looked at only global features
● What about local features like contextual features?

33



Bi-LSTM Layer
● The word embeddings and extracted sub-word features give global 

information about the word
● Whether a word is named entity or not depends on the specific context in 

which it is used
● For example,

○ I went to Washington
○ I met Washington

● The Bi-LSTM layer is responsible for disambiguation of the word in a 
sentence

● Here the disambiguation is w.r.t named entity tags
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Bi-LSTM Layer
● Given a sequence of words, {x1, x2, … , xn} the Bi-LSTM layer employs two LSTM 

modules
● The forward LSTM module reads a sequence from left-to-right and 

disambiguates the word based on left context
● The forward LSTM extracts a set of features based on current word 

representation and previous word’s forward LSTM output
○ hf

i  = f( xi , hf
i-1)

● Similarly, backward LSTM reads sequence from right to left and 
disambiguates the word based on right context

○ hb
i  = f( xi , hb

i+1)

35



What does Bi-LSTM Layer compute?

Revisiting the Deep Learning Architecture for NER

36



What does Bi-LSTM Layer compute?

Revisiting the Deep Learning Architecture for NER
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Bi-LSTM Layer
● The Bi-LSTM layer extracts a set of features for every word in the sentence
● We will now call this representation as instance-level representation
● Consider the sentence snippets,

○ वतमान म उ र देश के ज नसार बावर े  …

■ Currently Jaunsar Bavar area of Uttar Pradesh ...

○ … भावजूद भी कोई ो सा हत ( संतोषजनक ) उ र ा त नह ं हुआ
■ even after that no satisfactory answer was obtained

● The word उ र will now have two instance-level representations one for first 
sentence and the other for second sentence

● We will now query the nearest neighbors for उ र using instance-level 
representations from both sentences

38



B-LSTM Layer
Word Embedding Sentence 1 Sentence 2

Neighbors Score Tag Neighbors Score Tag Neighbors Score Tag

देश 0.8722 - उ र 0.9088 LOC उ र 0.9183 O

पि चम 0.8596 - उ र 0.9033 LOC उ र 0.9155 O

म य 0.8502 - त बत 0.8669 LOC उ र 0.9137 O

पूरब 0.8432 - शमला 0.8641 LOC उ र 0.9125 O

अ णाचल 0.8430 - क न र 0.8495 LOC उ र 0.9124 O

● The table shows the nearest neighbors (using cosine similarity) for the ambiguous word उ र using 
instance-level representation

● In sentence 1, the nearest neighbors are all location entities
● In sentence 2, we observe different instances of उ र appearing as nearest neighbors

○ All the instances of उ र takes the answer meaning as in … क उ र देने वाले यि त .. 39



Analyzing Bi-LSTM Layer 
Sentence 2

Neighbors Score Tag Sentence

उ र 0.9183 O क उ र देने वाले यि त

उ र 0.9155 O अनुसार उ र दये पर तु  

उ र 0.9137 O उसे उ र देने म

उ र 0.9125 O सह  उ र क  संभावना 

उ र 0.9124 O एक भी उ र ना दे 

● In sentence 2, we observe different instances of उ र appearing as nearest neighbors
○ All the instances of उ र takes the answer meaning as in … क उ र देने वाले यि त ..
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Softmax Layer (Linear + Softmax)
● The output from Bi-LSTM module and correct previous tag is fed as input to 

Softmax layer
● The correct previous tag is crucial in identifying the named entity phrase 

boundaries
● During testing, we do not have previous tag information
● We use beam search to find the best possible tag sequence

41



Results
● We perform the NER experiments on the following set of languages

Language Dataset

English CoNLL 2003 Shared Task

Spanish CoNLL 2002 Shared Task

Dutch CoNLL 2002 Shared Task

Hindi

IJCNLP 2008 Shared TaskBengali

Telugu

Marathi In-House Data
42



Results
● The following Table shows the F1-Score obtained using the Deep Learning 

system
Language F1-Score

English 90.94

Spanish 84.85

Dutch 85.20

Hindi 59.80

Marathi 61.78

Bengali 43.24

Telugu 21.11
43



Demo
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Thank You
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Questions?
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Introduction
● Typical machine learning approaches deals with fixed input or variable-length 

input and fixed output
○ Image Classification
○ Sentiment Analysis
○ …

● Certain tasks require the machine learning approach to generate 
variable-length outputs

○ Summary Generation
○ Machine Translation
○ Image Descriptions

● We will look at Deep Learning Approaches for such tasks, specifically we 
focus on Machine Translation

4



What is Machine Translation?
Automatic conversion of text/speech from one natural language to another

Be the change you want to see in the world

वह प रवतन बनो जो संसार म देखना चाहते हो
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● Summary
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Neural Machine Translation
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SMT, Rule-based MT and Example based MT manipulate symbolic representations of knowledge

Every word has an atomic representation,
which can’t be  further analyzed

home 0

water 1

house 2

tap 3
No notion of similarity or relationship between words

- Even if we know the translation of home, we can’t 
translate house if it an OOV

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Difficult to represent new concepts
- We cannot say nothing about ‘mansion’ if it comes up at test time 
- Creates problems language model as well ⇒ whole are of smoothing exists to overcome this problem 

8



Neural Network techniques work with distributed representations

home

water

house

tap

0.5 0.6 0.7

0.2 0.9 0.3

0.55 0.58 0.77

0.24 0.6 0.4

● No element of the vector represents a particular word
● The word can be understood with all vector elements
● Hence distributed representation 
● But less interpretable

Can define similarity between words 
- Vector similarity measures like cosine similarity
- Since representations of home and house, we 

may be able to translate house

Every word is represented by a vector of numbers

New concepts can be represented using a vector with different values

Symbolic representations are continuous representations
- Generally computationally more efficient to work with continuous values
- Especially optimization problems

Word vectors 
or embeddings

9



Encode - Decode Paradigm

Encoder

Decoder

Embed

Input

Embedding

Source Representation

Output

Entire input sequence is processed before generation starts
  ⇒ In PBSMT, generation was piecewise

The input is a sequence of words, processed one at a time

● While processing a word, the network needs to know what it 
has seen so far in the sequence

● Meaning, know the history of the sequence processing

● Needs a special kind of neural: Recurrent neural network unit 
which can keep state information

10



Encode - Decode Paradigm Explained

Use two RNN networks: the encoder and the decoder

म कताबने पढ

I read the book

s1 s1 s3s0

s4

h0 h1 h2
h3

(1) Encoder 
processes one 
sequence at a 

time

(4) Decoder 
generates one 
element at a 

time

(2) A representation 
of the sentence is 

generated

(3) This is used 
to initialize the 
decoder state

Encoding

Decoding

<EOS>

h4

(5)… continue till 
end of sequence 
tag is generated
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This approach reduces the entire sentence representation to a single vector

Two problems with this design choice: 

● A single vector is not sufficient to represent to capture all the syntactic and semantic 
complexities of a sentence

○ Solution: Use a richer representation for the sentences

● Problem of capturing long term dependencies: The decoder RNN will not be able to make 
use of source sentence representation after a few time steps

○ Solution: Make source sentence information when making the next prediction
○ Even better, make RELEVANT source sentence information available 

These solutions motivate the next paradigm

12



Encode - Attend - Decode Paradigm

I read the book

s1 s1 s3s0

s4

Annotation 
vectors

Represent the source sentence by 
the set of output vectors from the 
encoder

Each output vector at time t is a 
contextual representation of the 
input at time t

Note: in the encoder-decode 
paradigm, we ignore the encoder 
outputs

Let’s call these encoder output 
vectors annotation vectors

o1 o2 o3 o4

13



How should the decoder use the set of annotation vectors while predicting the next character?

Key Insight: 
(1) Not all annotation vectors are equally important for prediction of the next element
(2) The annotation vector to use next depends on what has been generated so far by the decoder

eg. To generate the 3rd target word, the 3rd annotation vector (hence 3rd source word) is most important

One way to achieve this: 
Take a weighted average of the annotation vectors, with more weight to annotation vectors which need 
more focus or attention

This averaged context vector is an input to the decoder 

14



म

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Let’s see an example of how the attention mechanism works  
during decoding

For generation of ith output character: 
ci : context vector 
aij : annotation weight for the jth annotation vector
oj: j

th annotation vector 
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म

h0 h1

o1 o2
o3 o4

c2

a21 a22
a23

a24

ने

h2
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म

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

ने कताब

h3
h2
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म

h0 h1

o1 o2
o3 o4

c4

a41 

a42
a43

a44

ने कताब

h3
h2

पढ

h4
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म

h0 h1

o1 o2
o3 o4

c5

a51 

a52
a53

a54

ने कताब

h3
h2

पढ <EOS>

h4 h5

19



But we do not know the attention weights? 
How do we find them?

Let the training data help you decide!!

Idea: Pick the attention weights that maximize the translation accuracy
(more precisely, decrease training data loss)

● Note ⇒ no separate language model

● Neural MT generates fluent sentences

● Quality of word order is better

● No combinatorial search required for evaluating different word orders: 
○ Decoding is very efficient compared to PBSMT

● Exciting times ahead!
20



I read the book

म ने कताब पढ

F

Read the entire sequence and predict the output sequence (using function F)

● Length of output sequence 
need not be the same as input 
sequence

● Prediction at any time step t 
has access to the entire input

● A very general framework 

21



Sequence to Sequence transformation is a very general framework  

Many other problems can be expressed as sequence to sequence transformation

● Summarization: Article ⇒ Summary

● Question answering: Question ⇒ Answer

● Image labelling: Image ⇒ Label

● Transliteration: character sequence ⇒ character sequence

22



Resources for Reading
Books & Articles
● Machine Translation. Pushpak Bhattacharyya (book)
● Neural Machine Translation. Kyunghyun Cho (online)

○ https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/ 
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Question Answering

• System that automatically answer questions posed by humans in 
natural language.

2



Why Question Answering?
● Conversational Agents

○ Ask it questions. Tell it to do things. Facebook (M), Apple (Siri), Google Assistant

● Biomedical and clinical QA
○ There is a need of system that accepts the queries from medical practitioners in natural 

language and returns the answers quickly and efficiently. 

● E-commerce sites
○ E-commerce sites can exploit the user reviews to provide the answers of various user 

questions.

3



Categories of QA
● Factoid Questions

○ Question that can be answered with simple facts expressed in short text answers. 
■ Question: Who is the author of the book Wings of Fire? 
■ Answer: A. P. J, Abdul Kalam

● List Questions
○ Question requires multiple facts to be returned in answer to a question. 

■ Question: What are the islands in India? 
■ Answer: Andaman Island, Nicobar Island, Labyrinth Island, Barren Island

● Descriptive Questions
○ The answer can be short descriptive from a single sentence to multiple but limited (2-3) 

sentences. It can also be the long descriptive where answer can be a paragraph with meaning 
full information of the natural language query.

■ Question: What is Greenhouse effect? 
■ Answer: The analogy used to describe the ability of gases in the atmosphere to absorb 

heat from the earth’s surface.
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A typical IR based QA

● Question Processing
○ Type of entity the answer should consists of (person, location, time, etc.). 
○ The query specifies the keywords that should be used for the IR system to use in searching

● Passage Retrieval
○ Collect the document against the query for documents.

● Answer Processing
○ To extract a specific answer from the passage. 
○ Use information about the expected answer type to find the answer

5



Sub-problems of QA
● Semantic Question matching

○ Given a natural language question Q and set of candidate questions CQ, the task is to rank 
each of the question Qcq ∈ CQ according to their semantic similarity to the question Q,

■ Q1: What are the best ways to lose weight? 
■ Q2: How can a person reduce weight? 
■ Q3: What are the effective weight loss plans?

● Answer Triggering
○ Given a question and a set of answer candidates, answer triggering determines whether the 

candidate set contains any correct answers. If yes, it then outputs a correct one.
■ Q: How big is BMC software in houston? 
■ A1: BMC Software Inc. is an American company specializing in Business Service 

Management (BSM) software. 
■ A2: Employing over 6,000, BMC is often credited with pioneering the BSM concept 

as a way to help better align IT operations with business needs.
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Problem formulation: Semantic Question Matching / Answer Triggering

● Let 
○ Question is q
○ Candidate questions are CQ ={cq1, cq2,...cqn}
○ Candidate answers are CA ={ca1, ca2,...can}

● Question - Question pairing
○ <q,cq1>, <q,cq2>, …. , <q,cqn>

● Question - Answer pairing
○ <q,ca1>, <q,ca2>, …. , <q,can>

● Decision
○ Binary - Yes/No
○ Similarity score - a contineous value in the range 0 to 1.
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Detecting Duplicate Questions with Deep Learning - 
Siamese Network

Yushi Homma, Stuart Sy and Christopher Yeh ; Detecting Duplicate Questions with Deep Learning; In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 
2016), Barcelona, Spain;
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Learning Hybrid Representations to Retrieve 
Semantically Equivalent Questions

C´ıcero dos Santos, Luciano Barbosa, Dasha Bogdanova, Bianca Zadrozny; Learning Hybrid Representations to Retrieve Semantically Equivalent Questions; In proceedings of the 53rd 
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pages 694–699, Beijing, China, 2015..
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Learning Hybrid Representations to Retrieve 
Semantically Equivalent Questions

C´ıcero dos Santos, Luciano Barbosa, Dasha Bogdanova, Bianca Zadrozny; Learning Hybrid Representations to Retrieve Semantically Equivalent Questions; In proceedings of the 53rd 
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pages 694–699, Beijing, China, 2015...
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SelQA: A New Benchmark for Selection-based 
Question Answering

Tomasz Jurczyk, Michael Zhai, Jinho D. Choi; SelQA: A New Benchmark for Selection-based Question Answering; In proceedings of the 2016 IEEE 28th International Conference on Tools 
with Artificial Intelligence (ICTAI), pages 820–827, San Jose, CA, USA, 2016...
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SelQA: A New Benchmark for Selection-based 
Question Answering

● For all w ∈ T, where T is common words in Q & A.
○ Pq & Pa  → parents of w in Dq & Da
○ Sq & Sa  → siblings of w in Dq & Da
○ Cq & Ca  → children of w in Dq & Da

● Three features: f(Pq, Pa ), f(Sq, Sa ) and f(Cq , Ca )

Tomasz Jurczyk, Michael Zhai, Jinho D. Choi; SelQA: A New Benchmark for Selection-based Question Answering; In proceedings of the 2016 IEEE 28th International Conference on Tools 
with Artificial Intelligence (ICTAI), pages 820–827, San Jose, CA, USA, 2016...
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