Language Model Pretraining and Transfer Learning for Very Low Resource Languages

Abstract

This paper describes our submission for the shared task on Unsupervised MT and Very Low Resource Supervised MT at WMT 2021. We submitted systems for two language pairs: German ↔ Upper Sorbian (de ↔ hsb) and German-Lower Sorbian (de ↔ dsb). For de ↔ hsb, we pretrain our system using MASS (Masked Sequence to Sequence) objective and then finetune using iterative back-translation. Final finetunng is performed using the parallel data provided for translation objective. For de ↔ dsb, no parallel data is provided in the task, we use final de ↔ hsb model as initialization of the de ↔ dsb model and train it further using iterative back-translation, using the same vocabulary as used in the de ↔ hsb model.

Publication
Proceedings of the Sixth Conference on Machine Translation